ML profiling tool for OptScale
Project description
Arcee
The OptScale ML profiling tool by Hystax
Arcee is a tool that helps you to integrate ML tasks with OptScale. This tool can automatically collect executor metadata from the cloud and process stats.
Installation
Arcee requires Python 3.7+ to run.
To install the optscale_arcee
package, use pip:
pip install optscale-arcee
Import
Import the optscale_arcee
module into your code as follows:
import optscale_arcee as arcee
Initialization
To initialize the arcee collector you need to provide a profiling token and a task key for which you want to collect data. To initialize the collector using a context manager, use the following code snippet:
with arcee.init(token, task_key):
# some code
Example:
with arcee.init("00000000-0000-0000-0000-000000000000", "linear_regression"):
# some code
This method automatically handles error catching and terminates arcee execution.
Alternatively, to get more control over error catching and execution finishing, you can initialize the collector using a corresponding method.
Note that this method will require you to manually handle errors or terminate arcee execution using the error
and finish
methods.
arcee.init(token, task_key)
# some code
arcee.finish()
# or in case of error
arcee.error()
To use a custom endpoint and enable/disable SSL checks (enable self-signed SSL certificates support):
with arcee.init(token, task_key, endpoint_url="https://my.custom.endpoint:443/arcee/v2", ssl=False):
# some code
Arcee daemon process periodically sends hardware and process data. The default heartbeat period is 1 second. However, arcee can be initialized with a custom period:
with arcee.init(token, task_key, period=5):
# some code
Sending metrics
To send metrics, use the send
method with the following parameter:
- data (dict, required): a dictionary of metric names and their respective values (note that metric data values should be numeric).
arcee.send({ "metric_key_1": value_1, "metric_key_2": value_2 })
Example:
arcee.send({ "accuracy": 71.44, "loss": 0.37 })
Adding hyperparameters
To add hyperparameters, use the hyperparam
method with the following parameters:
- key (str, required): the hyperparameter name.
- value (str | number, required): the hyperparameter value.
arcee.hyperparam(key, value)
Example:
arcee.hyperparam("EPOCHS", 100)
Tagging task run
To tag a run, use the tag
method with the following parameters:
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.tag(key, value)
Example:
arcee.tag("Algorithm", "Linear Learn Algorithm")
Adding milestone
To add a milestone, use the milestone
method with the following parameter:
- name (str, required): the milestone name.
arcee.milestone(name)
Example:
arcee.milestone("Download training data")
Adding stage
To add a stage, use the stage
method with the following parameter:
- name (str, required): the stage name.
arcee.stage(name)
Example:
arcee.stage("preparing")
Logging datasets
To log a dataset, use the dataset
method with the following parameters:
- path (str, required): the dataset path.
- name (str, optional): the dataset name.
- description (str, optional): the dataset description.
- labels (list, optional): the dataset labels.
arcee.dataset(path, name, description, labels)
Example:
arcee.dataset("https://s3/ml-bucket/datasets/training_dataset.csv",
name="Training dataset",
description="Training dataset (100k rows)",
labels=["training", "100k"])
Creating models
To create a model, use the model
method with the following parameters:
- key (str, required): the unique model key.
- path (str, optional): the run model path.
arcee.model(key, path)
Example:
arcee.model("my_model", "/home/user/my_model")
Setting model version
To set a custom model version, use the model_version
method with the following parameter:
- version (str, required): the version name.
arcee.model_version(version)
Example:
arcee.model_version("1.2.3-release")
Setting model version alias
To set a model version alias, use the model_version_alias
method with the following parameter:
- alias (str, required): the alias name.
arcee.model_version_alias(alias)
Example:
arcee.model_version_alias("winner")
Setting model version tag
To add tags to a model version, use the model_version_tag
method with the following parameters:
- key (str, required): the tag name.
- value (str, required): the tag value.
arcee.model_version_tag(key, value)
Example:
arcee.model_version_tag("env", "staging demo")
Creating artifacts
To create an artifact, use the artifact
method with the following parameters:
- path (str, required): the run artifact path.
- name (str, optional): the artifact name.
- description (str, optional): the artifact description.
- tags (dict, optional): the artifact tags.
arcee.artifact(path, name, description, tags)
Example:
arcee.artifact("https://s3/ml-bucket/artifacts/AccuracyChart.png",
name="Accuracy line chart",
description="The dependence of accuracy on the time",
tags={"env": "staging"})
Setting artifact tag
To add a tag to an artifact, use the artifact_tag
method with the following parameters:
- path (str, required): the run artifact path.
- key (str, required): the tag name.
- value (str, required): the tag value.
arcee.artifact_tag(path, key, value)
Example:
arcee.artifact_tag("https://s3/ml-bucket/artifacts/AccuracyChart.png",
"env", "staging demo")
Finishing task run
To finish a run, use the finish
method.
arcee.finish()
Failing task run
To fail a run, use the error
method.
arcee.error()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.