Skip to main content

Integration libraries of Optuna.

Project description

Optuna-Integration

Python GitHub license Codecov Read the Docs

This package is an integration module of Optuna, an automatic Hyperparameter optimization software framework. The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.

[!NOTE] You can find more information in our official documentations and API reference.

Installation

Optuna-Integration is available via pip and on conda.

# PyPI
$ pip install optuna-integration

# Anaconda Cloud
$ conda install -c conda-forge optuna-integration

[!IMPORTANT] As dependencies of all the modules are large and complicated, the commands above install only the common dependencies. Dependencies for each module can be installed via pip. For example, if you would like to install the dependencies of optuna_integration.botorch and optuna_integration.lightgbm, you can install them via:

$ pip install optuna-integration[botorch,lightgbm]

[!NOTE] Optuna-Integration supports from Python 3.7 to Python 3.11. Optuna Docker image is also provided at DockerHub.

Integration Modules

Here is the table of optuna-integration modules:

Third Party Library Example
BoTorch Unavailable
CatBoost CatBoostPruningCallback
Dask DaskStorage
FastAI FastAIPruningCallback
Keras KerasPruningCallback
LightGBM LightGBMPruningCallback / LightGBMTuner
MLflow MLflowCallback
MXNet Unavailable
PyTorch Distributed TorchDistributedTrial
PyTorch Ignite PyTorchIgnitePruningHandler
PyTorch Lightning PyTorchLightningPruningCallback
pycma Unavailable
SHAP Unavailable
scikit-learn OptunaSearchCV
skorch SkorchPruningCallback
TensorBoard TensorBoardCallback
tf.keras TFKerasPruningCallback
Weights & Biases WeightsAndBiasesCallback
XGBoost XGBoostPruningCallback
AllenNLP* AllenNLPPruningCallback
Chainer* ChainerPruningExtension
ChainerMN* ChainerMNStudy

[!WARNING] * shows deprecated modules and they might be removed in the future.

Communication

Contribution

Any contributions to Optuna-Integration are more than welcome!

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

If you use Optuna in one of your research projects, please cite our KDD paper "Optuna: A Next-generation Hyperparameter Optimization Framework":

BibTeX
@inproceedings{akiba2019optuna,
  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={2623--2631},
  year={2019}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna_integration-4.0.0b0.tar.gz (85.0 kB view details)

Uploaded Source

Built Distribution

optuna_integration-4.0.0b0-py3-none-any.whl (97.3 kB view details)

Uploaded Python 3

File details

Details for the file optuna_integration-4.0.0b0.tar.gz.

File metadata

  • Download URL: optuna_integration-4.0.0b0.tar.gz
  • Upload date:
  • Size: 85.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for optuna_integration-4.0.0b0.tar.gz
Algorithm Hash digest
SHA256 1f47b56ee2fa3315b29284ee7601dce3d6db042a8c24b0a76b6505fb013901c9
MD5 a125168a7bd2a1238cc6dc606930f84c
BLAKE2b-256 44f6dfc9d46ac1f38dfbff5165dea73274b4d4f48f225ac8b44b98cbb14fe68b

See more details on using hashes here.

File details

Details for the file optuna_integration-4.0.0b0-py3-none-any.whl.

File metadata

File hashes

Hashes for optuna_integration-4.0.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 96ebf0be1b8830b06588e07c2d8948fc7219508c4f079a8560b8eef9798f8c6a
MD5 05bfc1fab7e81f588861e9ec6733849e
BLAKE2b-256 f4273711ff6492e6488485f7f233c0560e342b2d403cbf2ede8e078537ed9b1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page