Skip to main content

Pipelines And Systems for Threshold Avoiding Quantification (PASTAQ): Pre-processing tools for LC-MS/MS data

Project description

Test PASTAQ on binder

Binder

Installation

Python 3 virtual environment

pip install pastaq

Installing from source

You need to install a suitable C++ compiler and corresponding build tools for your platform as well as CMake. The instructions listed here refer to the installation of PASTAQ's Python bindings. Currently the only external dependencies, including zlib, are included as git submodules.

To get started, clone this repository and initialize git submodules:

git clone https://github.com/PASTAQ-MS/PASTAQ.git
cd PASTAQ
git submodule init
git submodule update --remote

As usual, it is strongly recommended to create a Python 3 environment in which to build Pastaq, and the core development has been with Python 3.9, but 3.10, 3.11 and 3.12 should also work.

python -m pip install --upgrade pip
python -m pip install build
python -m pip install wheel

# create the .whl file in the ./dist folder
python -m build --installer pip --wheel

Windows

When building Pastaq in Windows, it may be helpful to first open a Visual Studio command prompt using Tools->Visual Studio Command Prompt in the Visual Studio IDE so that you have access to the compiler and linker. Then, in that command window, activate your PASTAQ Python environment and proceed with the instructions.

Powershell

Get-ChildItem ./dist/*.whl | ForEach-Object { pip install $_.FullName }

CMD command prompt

for %f in (./dist\*.whl) do pip install %f

Linux

find ./dist/*.whl | xargs pip install 

Now it can be imported and used in python as follows:

import pastaq
raw_data = pastaq.read_mzxml(...)

Usage

Examples of the usage of the PASTAQ can be found in the examples folder. To run them, install pastaq as previously described, update the input path of the mzXML and mzID files, change any necessary parameters and run it with:

python examples/small_range.py

You can use any mzXML files and identifications in mzIdentML v1.1+. If no identifications are available, remove the ident_path from the input files array or set it to 'none'. You can find the files we used for testing and development via ProteomeXchange, with identifier PXD024584.

Processing of mzML files is in an early stage and may lead to some issues.

For more information about PASTAQ and the configuration of the parameters, please visit the official website.

How to cite this work

The main manuscript has been published in as Open Access Analytical Chemistry with the following details: Alejandro Sánchez Brotons, Jonatan O. Eriksson, Marcel Kwiatkowski, Justina C. Wolters, Ido P. Kema, Andrei Barcaru, Folkert Kuipers, Stephan J. L. Bakker, Rainer Bischoff, Frank Suits, and Péter Horvatovich, Pipelines and Systems for Threshold-Avoiding Quantification of LC–MS/MS Data, Analytical Chemistry, 2021, 93, 32, 11215–11224.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pastaq-0.11.2-cp312-cp312-win_amd64.whl (489.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

pastaq-0.11.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (778.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pastaq-0.11.2-cp311-cp311-win_amd64.whl (489.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

pastaq-0.11.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (779.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pastaq-0.11.2-cp310-cp310-win_amd64.whl (488.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

pastaq-0.11.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (778.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pastaq-0.11.2-cp39-cp39-win_amd64.whl (482.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

pastaq-0.11.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (778.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pastaq-0.11.2-cp38-cp38-win_amd64.whl (488.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pastaq-0.11.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (778.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pastaq-0.11.2-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (785.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

File details

Details for the file pastaq-0.11.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 489.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pastaq-0.11.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 81dba82e7aa06e5d49ba23394312955daa8fa7eadfb3df8421a511ebbef7adbc
MD5 8d525ed62081a608b8dd4d3f26ae9841
BLAKE2b-256 934a2f090216c77f6ae1981d5f5e9cf26ec803152cbe2e872ad74f27aaeb97a9

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 669a61c88fb12e2553232e021531c6fb91e94fe75466aaa4309dbf9a37c823df
MD5 4cf5dddba27e9d3a44e40f40c7b44832
BLAKE2b-256 bde121c7fdd7577f2fd3b848e945ad28ea85ce2c183e406e506afacfcc30c69b

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 489.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pastaq-0.11.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5554423a5858d0b6412607a4c548e82751eb0ffc86408b92ccfc153eec5bd02d
MD5 c7132d66e7f9093054b302345443f134
BLAKE2b-256 66158cf294af1bd1613f4157eb320cbb61a574be3a72766347c143d1d27e8e60

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 be92701ffaf7ab17df38a8d3904a6dff60ec37972ffa53b29362c6f59bb8608a
MD5 9a5d6968f883d7e82f65a6958a586d13
BLAKE2b-256 dea12dbf25aafe96aaa921f508815fffdeda3faf8e02a8569789a45815d9c8bf

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 488.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for pastaq-0.11.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 12f45c200f9c515a40dc94dc8118e6cc0c0180e8aff3a8a071fa1f5122b8dfff
MD5 375bac1f0eabdbd1c4b4fde7ae24417e
BLAKE2b-256 a0e5d46d211890626ced41ea77ded70a0b4dbfaf85f2fed51ecf493cf3c80985

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 96c04f77cb12adf2024f073c7cc32e21959d1004fc5db0cfc44d199ab483ae37
MD5 27ec87234f932f4b9bfb0be7304c52e8
BLAKE2b-256 386e2984bc89c0563c1d21bc1ab334553e7cec29eb970416d897b6326210eafb

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 482.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pastaq-0.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8ac7038616a70918ed4f7f499bad9ff53ac80da783b580e2b38aa9d0dc256287
MD5 7940c78fef74924f3bc8a13c443e5475
BLAKE2b-256 109faafc448f09ff9efede7b4814dc2376fb8dd10c39c2016b07bcdb731935bc

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1819acac42a8c7d9a7ea0549fd5da1d855fc9ffcbf211c017620dcc3bc709c04
MD5 9ab38b70733e78d61196538224b36b75
BLAKE2b-256 af857c21c6306942df656b5c95bb675ae03274be179e5b2da2be02521223bed3

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pastaq-0.11.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 488.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for pastaq-0.11.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93c5feac9b2e6b339ae46af777b22313a0f3dfafd0d4b79e8ca93d7fe79fabe3
MD5 c3e2eddc6b08ae45b784628896369794
BLAKE2b-256 9790097858dd187289d03247f1ffa85e20a63d3b82241f8a793ef3f0a264763e

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 268f9d40a490057af506351ee4c0551c80c14a5aea3bc9d8770bf2cc87a45ab6
MD5 a67d547ecbb48f0d9dc46647ca191ab5
BLAKE2b-256 0592b561f031ee716e70ba18127bc22f61dab50401e46eb24bdd81c366631be0

See more details on using hashes here.

File details

Details for the file pastaq-0.11.2-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pastaq-0.11.2-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aa837091739f4bbfcb497a7118506a0c91a0971e0642a9f3138d3ce1b310a6ec
MD5 8448b2f0b46fef38f23c18396513e9d3
BLAKE2b-256 57f0350fee2366499ca913dd17dd964f23fc8920781181ae7587281eb8a64d43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page