Denoising method for sequence of images or volumes. Primarly targeting fMRI data.
Project description
Release (TBA) |
This repository implements patch-denoising methods, with a particular focus on local-low rank methods.
The target application is functional MRI thermal noise removal, but this methods can be applied to a wide range of image modalities.
It includes several local-low-rank based denoising methods:
MP-PCA
Hybrid-PCA
NORDIC
Optimal Thresholding
Raw Singular Value Thresholding
A mathematical description of theses methods is available in the documentation.
Installation
patch-denoise requires Python>=3.8
Quickstart
After installing you can use the patch-denoise command-line.
$ patch-denoise input_file.nii output_file.nii --mask="auto"
See patch-denoise --help for detailled options.
Documentation and Examples
Documentation and examples are available at https://paquiteau.github.io/patch-denoising/
Development version
$ git clone https://github.com/paquiteau/patch-denoising
$ pip install -e patch-denoising[dev,doc,test,optional]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for patch-denoise-1.2.1.dev22.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 464d2ef93273d3d46e8d3bda6092bb693dcbc30027f15d563b2f164226cb945b |
|
MD5 | fc2f540b6fdeff06e9f9b85fe889b630 |
|
BLAKE2b-256 | 484379334f3b7cb6c9a70a3596b380f10166ccda80d2c8f4d5c8cccac470526b |
Hashes for patch_denoise-1.2.1.dev22-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2d60f7d2e5246f4f5817260faf23b5c276b7f75c294b486224da904b7fefdcb |
|
MD5 | eb032d6363d650389306cd322f24ceb5 |
|
BLAKE2b-256 | 5e57d6ef4bee4dbb6dffda63cb9a070a5a76d4852e91bbb25f314e7fb570c39c |