Skip to main content

A tool for detecting anomalies in time series data

Project description

mantis logo
Info:

Paper draft link will be posted here

Author:

ZeD@UChicago <zed.uchicago.edu>

Description:

Discovery of emergent anomalies in data streams without explicit prior models of correct or aberrant behavior, based on the modeling of ergodic, quasi-stationary finite valued processes as probabilistic finite state automata (PFSA).

Documentation:

https://zeroknowledgediscovery.github.io/patternly/patternly/detection.html

Installation:

Usage:

See examples.

from patternly.detection import AnomalyDetection

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

patternly-0.0.4.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

patternly-0.0.4-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file patternly-0.0.4.tar.gz.

File metadata

  • Download URL: patternly-0.0.4.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for patternly-0.0.4.tar.gz
Algorithm Hash digest
SHA256 4f3079398f697dcb3d83570a9fb5d788014e4bf37aa200371261341fc6aff2ff
MD5 f6255c8f09fe4dea7de421136ad25ab2
BLAKE2b-256 4bbee5f47778e9de6f1093943908c3f3e6f5c9f1ad383568edf201eb4e757aea

See more details on using hashes here.

File details

Details for the file patternly-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: patternly-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for patternly-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f13058f9fa229d20be5b3cc544e976b3cb9907057d562533dbad2d49cd5ef87d
MD5 56696b7225761f8d392f7feeaaf876d1
BLAKE2b-256 bba184d5ab3f9477fa8b3c121944d435e53236194595a4e9faa660d7e0be8c3f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page