Skip to main content

A fast implementation of the Goemans-Williamson scheme for the prize-collecting Steiner tree / forest problem.

Project description

Build Status

pcst_fast

A library for solving the prize-collecting Steiner forest (PCSF) problem on graphs. The underlying algorithm is based on the classical Goemans-Williamson approximation scheme. Our variant provably runs in nearly-linear time and has a factor-2 approximation guarantee. The following paper contains details about the algorithm:

A Nearly-Linear Time Framework for Graph-Structured Sparsity Chinmay Hegde, Piotr Indyk, Ludwig Schmidt ICML 2015

Installation

  • Option 1: pip

      pip install pcst_fast
    

    This may not work for some versions of python on some operating systems.

  • Option 2: manual

    The core C++ library has no dependencies besides a basic build system for C++11. Both g++ and clang are currently supported. The Python wrapper requires a functioning Python build system.

    Clone the repository and compile the python wrapper with the supplied makefile:

      make pcst_fast_py
    

    You can then import the package via import pcst_fast.

Usage

The pcst_fast package contains the following function:

vertices, edges = pcst_fast(edges, prizes, costs, root, num_clusters, pruning, verbosity_level)

The parameters are:

  • edges: a 2D int64 array. Each row (of length 2) specifies an undirected edge in the input graph. The nodes are labeled 0 to n-1, where n is the number of nodes.
  • prizes: the node prizes as a 1D float64 array.
  • costs: the edge costs as a 1D float64 array.
  • root: the root note for rooted PCST. For the unrooted variant, this parameter should be -1.
  • num_clusters: the number of connected components in the output.
  • pruning: a string value indicating the pruning method. Possible values are 'none', 'simple', 'gw', and 'strong' (all literals are case-insensitive). 'none' and 'simple' return intermediate stages of the algorithm and do not have approximation guarantees. They are only intended for development. The standard GW pruning method is 'gw', which is also the default. 'strong' uses "strong pruning", which was introduced in [JMP00]. It has the same theoretical guarantees as GW pruning but better empirical performance in some cases. For the PCSF problem, the output of strong pruning is at least as good as the output of GW pruning.
  • verbosity_level: an integer indicating how much debug output the function should produce.

The output variables are:

  • vertices: the vertices in the solution as a 1D int64 array.
  • edges: the edges in the output as a 1D int64 array. The list contains indices into the list of edges passed into the function.

Performance

The following paper contains many results on standard PCST benchmark instances:

A Fast, Adaptive Variant of the Goemans-Williamson Scheme for the Prize-Collecting Steiner Tree Problem Chinmay Hegde, Piotr Indyk, Ludwig Schmidt Workshop of the 11th DIMACS Implementation Challenge: Steiner Tree Problems, 2014

On instances with up to 350,000 edges, the algorithm typically runs in under 2 seconds on a standard laptop computer from 2010.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcst_fast-1.0.10.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (113.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (121.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (87.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pcst_fast-1.0.10-pp39-pypy39_pp73-win_amd64.whl (80.5 kB view details)

Uploaded PyPy Windows x86-64

pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (113.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (121.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (87.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pcst_fast-1.0.10-pp38-pypy38_pp73-win_amd64.whl (80.5 kB view details)

Uploaded PyPy Windows x86-64

pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (113.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (121.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (87.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-cp312-cp312-macosx_10_9_x86_64.whl (96.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pcst_fast-1.0.10-cp311-cp311-win_amd64.whl (81.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pcst_fast-1.0.10-cp311-cp311-win32.whl (71.2 kB view details)

Uploaded CPython 3.11 Windows x86

pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-cp311-cp311-macosx_10_9_x86_64.whl (100.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pcst_fast-1.0.10-cp310-cp310-win_amd64.whl (80.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pcst_fast-1.0.10-cp310-cp310-win32.whl (70.4 kB view details)

Uploaded CPython 3.10 Windows x86

pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl (98.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pcst_fast-1.0.10-cp39-cp39-win_amd64.whl (80.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pcst_fast-1.0.10-cp39-cp39-win32.whl (70.4 kB view details)

Uploaded CPython 3.9 Windows x86

pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl (98.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pcst_fast-1.0.10-cp38-cp38-win_amd64.whl (80.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pcst_fast-1.0.10-cp38-cp38-win32.whl (70.3 kB view details)

Uploaded CPython 3.8 Windows x86

pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pcst_fast-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl (98.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pcst_fast-1.0.10.tar.gz.

File metadata

  • Download URL: pcst_fast-1.0.10.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pcst_fast-1.0.10.tar.gz
Algorithm Hash digest
SHA256 3b5694110ce2e004471f383267d5e4ab7fe1ba9828954e8c42560ac1e42b25e6
MD5 6690fcc5aa38ba0082261297a1ec5f45
BLAKE2b-256 d4fd64b51c867bad63e6622ff97cad6230b94b19b5a61e30424cd69c8353091c

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41f294f7a76053293ac89d6d26f0a069fe3f27a2bb26d79df16d20a75d1b099b
MD5 c87c8a968108fe4e1a4149a8aff7e4fe
BLAKE2b-256 a4d56f6b1e73b1fc93940efcbdb0bfd214b032f5398f367e53336f2ba7d3799f

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7abd9b2ccfb0653d74f046e590f758f54188c127823dcafd74eeb276ccb8a705
MD5 175e25a4944ee2bbcd1a148944d04935
BLAKE2b-256 e47146a4b26b032d6839a20bb2107926ee9cb5160822658e47d38d06aeb487ff

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2e806d38aca45ac34c8df9dea1f40b84c9f040728b1953f1935182b1a62c41d
MD5 41003503e1019ec6b5d98abcd5fab560
BLAKE2b-256 feba21d5591ec0b71399343116347648c352f2ebf2385e4d7946b8d5de0cec33

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d66b6ea014b09111402064544133f6510713d2a13be643510236de9b637a1efe
MD5 c95aec86953049610750d95c23ff1972
BLAKE2b-256 4ce6e541f3e06139c200fb976269bc65ca8177b024ad5519ea2fe6e4ff648a71

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b23b80c8d0c27d56d9432c659bf7693bbcdc11a65c8a149a07a09ea54ea52446
MD5 17d04bf021a194eddcfb1405e8fbc928
BLAKE2b-256 cf60f119dde5f2aad1b051fd94202c9b9fc6dec9b0b9eb8681a19d3b0cb2242a

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 348a1fc8ce8cf839f6e0024ba5bbc01fdd0d61908e2314516ccc801b0c0beed2
MD5 d3a4842ebe0a94dd14367a7b88a9ec44
BLAKE2b-256 1c6f7b5c872c0e92fed339bbe6879b73d651ef0c70f75bad95375a7ef14ef42a

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4548f422af23d625baf419e866d82bfccc41844eef599767dc8923238e000fa3
MD5 e15a06a1c404fc3e7eb37a21b837551a
BLAKE2b-256 5a68fcd48ffc88982025386b88d9ca064d611fa1ce66d450e7d7e9f5ceab673a

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8f61190789f6fd4a463cd2b6195ecbe8ced521f17af1ad005eacba5cd5918ed4
MD5 46180097c5798906f7d4b5a70ad24d3c
BLAKE2b-256 c28f1ab4d73c4834b4fbc6c84bd0a226d69c0cdad0c4556f5f9d96ae040ac2e5

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50a0e3b2c1153ec7e984b3664e674d228652bce9b6fcb927559ec5b2c36423d9
MD5 5fb0f62aff600d7c038dd4464b0a73c5
BLAKE2b-256 3ea7a45cdae4545cf4cb86745dc6348306e6afddde7549439347fb6ab5d5f6ac

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1e8800e90113a6d0ce0d910caeb32d9c0ea786bd9b8d1aefb53b15f92e0ee41
MD5 b813d5a2ad3a87585ae607dc0aeb11b2
BLAKE2b-256 9c7d24ee77f5c11bed2cf67854ded9a6127bfe94de3f0b3b7dc79bbbf183c2c4

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfb3f2d52dec4829fac19839101fa62209d1135dd540c64b352a579124cfc3c5
MD5 1c68bda46d7cbff65cdb2790299c991a
BLAKE2b-256 5f21849c133532af2b8ea65ebe29e95cf950298f465d88e7b18168fe6b347030

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da194e710fa847aa7707ef9fed391b9a08fafa0b6d681a8846a9cc77d26bffca
MD5 b3ab187f5f62c1f4bea7be64b34a60bb
BLAKE2b-256 862beab1a1d752a94980dd0055f55bcee731ac893e169b527e84f0a6393a037e

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 837be0ca99f3417b35c873046a0b22d94de309960f3106eb8fb1453b705ad85d
MD5 22059147552aeff11b3460403592b5c1
BLAKE2b-256 3e7568dffc0c863a3fd18e975db44072d0c2e19d6b867d8e32ade54ee0ba313e

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a051b58d66eeee139a4f4b274467fb737074447cabeb5d4360d31be3b7c6530a
MD5 aa606982ddfba656c5fcb4b21a3e174f
BLAKE2b-256 1af7f20c09bbea70c17c1f50273e82347ab8a5d7a2b3aed2288083bee078ea47

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6b3aa1cc8a544e9390584cd0453280ce5da3b93cedbc1b7623b439c40838ddb6
MD5 2155b109dbf72fa7bf8a1bf61717fa2d
BLAKE2b-256 6cd0c8bd86957614dfe16dee5a843013bf7903ba369928b9684f2582fc18a75b

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 375990478236bde3b40925a3dcc279a9dc8bb061db01e79b23c47c5578a32df3
MD5 0e296fecf4f0e23d40ffb36625ca7180
BLAKE2b-256 25a7d6d72f4dff7d46a7338e9dd638817938e0e208d131d9c508a85c4f9fabd3

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a99905816a06e9c3a38f4ee2641740783b76d367e3acebade58716342cd087be
MD5 185a33815dc0586af0f5858580bb93be
BLAKE2b-256 9400e1be07bf72a446c6a545a197dc6d559c95e1715037b0c415216d1b57de78

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: pcst_fast-1.0.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 71.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9eb5234ec3938e28fabf2941102c57e40b92ee10b666d86c239b9109dab2eccc
MD5 af27fd85897fbed8de074bdada7bb855
BLAKE2b-256 3a12f629aa7b5a844d6292bacec8118a4997ba3f84597bd6be9625c021f7bf44

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a97c2468a82a2c4e79dafcc31bfab31655dd4c420e6be6aa7931b9fe9e6d2e0f
MD5 6799d15ccfdc017fe33e8c21b935cd59
BLAKE2b-256 df467ce28a6c150dcee3b77b02f19b5e7a01937e69c50e5a625b1d79d60ce73a

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2c8d75427b939287df78ce625b1484c9d44173c84ac7b86b846a1e8fce3d6468
MD5 ca02ddd5965dbade4fc38b6cb8c20cb1
BLAKE2b-256 7745c6076e9ee8621ee58119b5e22bbbd75aaed26ecc0dcdc6f8716308dced37

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa00282b9386fe9221a7fe91ea4591e80fbf4c7a306ee0b17af9748fb02edb2d
MD5 a54d0f744606e9d298a7791616ff254e
BLAKE2b-256 7ff8d22ae7e84c6c5b8861196892a511fc4a3ee9d256e50d1837edd8846ebf62

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0a1eea51d864dbdea7197c60bf0da099117c550944705d089633b0677bb04195
MD5 27a994817513d34f5f31825f8fdffc70
BLAKE2b-256 8be1c6d14367ec0daf0cad033428f39832080ef948479e78b821e97628038cc1

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2fae83754e1f39b0d944baaf1e65bdc1eb42f8cb463665155c43c55113075fe7
MD5 c8805fc54c167e551dd8e9704a1aabc6
BLAKE2b-256 933a28200301f83c745525bdbc58ec2fcab54dbe922d9479cd92c7984e2064fa

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9e2cbf3bc31b347bfbe4806e983daeede07b1ca0c7a23a5d0a858cfdd2c64b95
MD5 1a4226408c1b786f905e991f723358b9
BLAKE2b-256 e1f46f56d96b0d174861bf3e86a0f12914ef3fe70a24136e568636c4d64b1506

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: pcst_fast-1.0.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 70.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 96a9f7690672430fbb4f5730cae726ab4bf16704f8d976908b1adf49378020ec
MD5 977ff3880055b3fb31e4658c7b28bd3a
BLAKE2b-256 e810f931c19a39809feab503246b47fddfe0c6b144af11bb259aaa1bb6c86d77

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3aaf8567fbfac8a2977883e7b4552930d3da9940e4b9e85c245af8ada283c9d7
MD5 04b03a97e6954c7fe97940cb2ba090e9
BLAKE2b-256 9887e56735fc878231a8b7d8b2179447b4048d8168e585956836a80c0032df58

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 78bd566bf369ca1683c8cc0978c31d1f634eed940a90ddfe7db65536e6ffefa5
MD5 d065b93fa42ec451338626e58e5866a2
BLAKE2b-256 34c82c5525b534e3c276c4964a629e8484458195080e1234c260376c4bfbc96a

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baef36acd74705123c8af510089ff47f3b12639305f413e0cd727c76150102f4
MD5 e5810fd0b3a2dd157e946cc1a8133833
BLAKE2b-256 58f4870ee0bd200d0a2f6aed5f7da154b20125635552135cc0a83eb69f244919

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 04bccd7cbf6f6347f2ee2be533af28f6a4322a59522532dc1102a282c2adbaea
MD5 f06cd4610cabb2590908449434a7eb40
BLAKE2b-256 46e4bf05cafe54b15866407cd90c13de80b3033b11414e62152df1fedd99abc8

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8aeb0e1fb02ad3c0dc531e4d032290484bd0e17e3b39f75671245f99c62d866
MD5 e19fb02acdcd33a18fe90ee5c77838b7
BLAKE2b-256 344e8c09572be287e33ab9f0264248b36801580555a4a2b4c3dfe93207c885b5

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 25e7ea478f079d5ecbb3e74fcf9ba685a40bc9994eff45cc416fa8c4b0c2681b
MD5 2c843ff28297b72ea143f39434298a3d
BLAKE2b-256 4a5a416302c0e9675135f893d8256867c8b2088d6d6efa5230d2b04d9252942e

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: pcst_fast-1.0.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 70.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 62dde8546446d5296cc9d884052cb3f2b7cbbb79ae1e0aa28f56c4622ea24fe1
MD5 6d12d1fee013f431ff319621fdb72234
BLAKE2b-256 5cddf594eeb62a9caf8a77bab7eb599c801227be34dd1ff9d05fdad728eb63cd

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8191eb886124098482b8a64d621629ad9eb85e62825e911539e9311d2625ff8c
MD5 1787e5dc51858edd4a223f0e752ebff6
BLAKE2b-256 1d4a47cc5d34735cd8daa9483b5f78b1b315efd50aaba452d8774f898c9f0495

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f5b00b355996fbe30a386f6769d2eb88c70eb79be784b879b7556f87926765aa
MD5 e8eca617b374f50969dbe57bae0f80d8
BLAKE2b-256 8b657f65f3bb154293f99ccfbc6d840004f0b052e140c3868b59e8a6895ba231

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9aa64605159bb0ba705f0d8ddde56c00b4a30af237b5e56573f7fbee09ffacb
MD5 d48eb02b09a61368833e0a8d570c4002
BLAKE2b-256 0fa9b17ace3b63cee3b4681a0d8cb53114cdb14164ee0186b9ccd69574c4ec89

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 915fee442fb618a8cac01e47d2d84baeab7ed44e1d4069ddfb4e88e2073a68f1
MD5 6131ca040888d2e4a964a1ebfc72b447
BLAKE2b-256 1096a895069bcae05ed5b27932defa25a4aa6b9485e36b30f18bd884a0a2c222

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8f7b73806912e7dfc77e089567187538153fd3473e2bcc74551273a36c8a8b4
MD5 b69ba85c0c1453f827f26019ed35cf82
BLAKE2b-256 7869125e23d0377ae4a2a06503a88ebd5b2ec888220abc8b0101231b9ae15c93

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0cec628830b752e18b817aaecde54db1bdf74864803eeaffed0d5eda7d2286b2
MD5 4498c40afa0cd0c16a2d3594c1cb37dc
BLAKE2b-256 2b41af4fea2e490bff2ad86f6b0d9a85959289b00dc0a7110122d6d8324825a0

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: pcst_fast-1.0.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 70.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 062dbc93360b9c793d3fabe0d933b3deec2369b902176d41e12078d7e5ffac27
MD5 71eaa41c5727e37b6af5ae675293d6a0
BLAKE2b-256 a9381c5dc3987f731bfad50d5fd5a1cd669a7465e8e61edea1134a893affbdfe

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da5e14ca02a60f1e4242336fcde1944d14665f449e015066b542fa489ba0165b
MD5 214440b63261f82b7c43af90af74fd94
BLAKE2b-256 97f6881ad7d88fabef66239229e9816dd9843b4b115c56a6f6ec52cf4df3e798

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f017207bc4620549c48c20bd37729c3313ecce1f71a80c4f361c3a9a19008b60
MD5 10ae0f1549568095fd86cb2b7c9d0480
BLAKE2b-256 3383d8452de269ca82d28f7f75d854a451cd0c1b159c9b8b27daa6d575422bd2

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 405ebed6209ff2bc0a89ab934cb02d602f5261bc6063a57cbcb6b1f7c3d7e442
MD5 302f6246e87ec03d5c7fe37a38132759
BLAKE2b-256 c295171c0948119d34e2c248e05744d97077c7253347133ffbf3d52868196c5e

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1fcddaac0523a765500d6b6a789e66c4eb9edc39e2b150c73ed22a02534a0733
MD5 0910ab993bd14063d242139f92dd7d9c
BLAKE2b-256 6ccaeb9222fd270553c2cf58763e0ab079adc261a167260991dca542137b9f70

See more details on using hashes here.

File details

Details for the file pcst_fast-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pcst_fast-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2772a5e01518c7602651a601cb84d4399813325ff879d3bd09ad3c46ab51f6e
MD5 5f546c872cf452bfc189210abe859525
BLAKE2b-256 1f20f59291758ea074321cc52d2ee84638b18f979d3f248e065acd5608f2abd2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page