Skip to main content

Basic Utilities for Protein Structure Data

Project description

PDBBasic

Basic Functions for Protein Structure Data

Install

pip install pdbbasic

Usage

import numpy as np
import torch
import pdbbasic as pdbb

# simple PDB file read
coord1 = pdbb.readpdb('filename.pdb')
# coord1.shape -> (N, 4, 3), N=length, 4=atoms:(N,CA,C,O), 3=coordinates:(x,y,z)

# read PDB with information (chain-id, residue-number, residue-type, occupancy, b-factor)
coord1, info1 = pdbb.readpdb('filename.pdb', with_info=True)

# read mmCIF file
coord1, info1 = pdbb.readmmcif('filename.cif', with_info=True)

# download from PDB
coord1, info1 = pdbb.download('7bqd', with_info=True)

# calc RMSD
ca1 = coord1[:,1]
ca2 = pdbb.readpdb('filename.pdb', CA_only=True)

rmsd_np = pdbb.rmsd(ca1, ca2)

# Kabsch superposition
coo_sup1, coo_sup2 = pdbb.kabsch(ca1, ca2)

# torsion angle
torsion = pdbb.torsion_angles(coord1)
# torsion.shape -> (N, 3), 3=dihedrals:(phi,psi,omega)

# distance matrix
distmat_within = pdbb.distance_matrix(ca1)
distmat_between = pdbb.distance_matrix(ca1, ca2)

# torch Tensor is applicable
rmsd_torch = pdbb.rmsd(torch.Tensor(ca1), torch.Tensor(ca2))

# Frame representation like AlphaFold (translation, rotation)
trans, rot = pdbb.coord_to_frame(coord1)
# trans.shape -> (N, 3), rot.shape -> (N, 3, 3)
frame = trans, rot
coord_recon = pdbb.frame_to_coord(frame)

# FAPE (Frame Aligned Position Error)
frame1 = pdbb.coord_to_frame(coord1)
frame2 = pdbb.coord_to_frame(coord2)
fape = pdbb.FAPE(frame1, frame2)

# batched calculation is applicable
ca_batch1 = np.repeat(np.expand_dims(ca1, axis=0), 100, axis=0)
ca_batch2 = np.repeat(np.expand_dims(ca2, axis=0), 100, axis=0)
bb_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)

rmsd_batch = pdbb.rmsd(ca_batch1, ca_batch2)
sup_batch1, sup_batch2 = pdbb.kabsch(ca_batch1, ca_batch2)
torsion_batch = pdbb.torsion_angles(bb_batch)
distmat_batch = pdbb.distance_matrix(ca_batch1)

coord_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)
frame_batch = pdbb.coord_to_frame(coord_batch)
coord_recon_batch = pdbb.frame_to_coord(frame_batch)
fape_batch = pdbb.FAPE(frame_batch, frame_batch)

# all against all RMSD calculation
rmsd_matrix = pdbb.rmsd_many_vs_many(ca_batch1)

Requirement

  • python3
  • numpy
  • pandas
  • pytorch
  • einops
  • pytorch3d

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pdbbasic-0.7.5-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file pdbbasic-0.7.5-py3-none-any.whl.

File metadata

  • Download URL: pdbbasic-0.7.5-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for pdbbasic-0.7.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8cc6489f9b810b432e142241b61a103707144dc2ef981f9c6f8ea7934798da5e
MD5 7414b386a1f53d12bdda30b7fd9aaffe
BLAKE2b-256 8499a414fa769088f362bde4b372e4d9bf7c433818977e5c2014b0b3c83f9238

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page