Skip to main content

Basic Utilities for Protein Structure Data

Project description

PDBBasic

Basic Functions for Protein Structure Data

Install

pip install pdbbasic

Usage

import numpy as np
import torch
import pdbbasic as pdbb

# simple PDB file read
coord1 = pdbb.readpdb('filename.pdb')
# coord1.shape -> (N, 4, 3), N=length, 4=atoms:(N,CA,C,O), 3=coordinates:(x,y,z)

# read PDB with information (chain-id, residue-number, residue-type, occupancy, b-factor)
coord1, info1 = pdbb.readpdb('filename.pdb', with_info=True)

# read mmCIF file
coord1, info1 = pdbb.readmmcif('filename.cif', with_info=True)

# download from PDB
coord1, info1 = pdbb.download('7bqd', with_info=True)

# calc RMSD
ca1 = coord1[:,1]
ca2 = pdbb.readpdb('filename.pdb', CA_only=True)

rmsd_np = pdbb.rmsd(ca1, ca2)

# Kabsch superposition
coo_sup1, coo_sup2 = pdbb.kabsch(ca1, ca2)

# torsion angle
torsion = pdbb.torsion_angles(coord1)
# torsion.shape -> (N, 3), 3=dihedrals:(phi,psi,omega)

# distance matrix
distmat_within = pdbb.distance_matrix(ca1)
distmat_between = pdbb.distance_matrix(ca1, ca2)

# torch Tensor is applicable
rmsd_torch = pdbb.rmsd(torch.Tensor(ca1), torch.Tensor(ca2))

# Frame representation like AlphaFold (translation, rotation)
trans, rot = pdbb.coord_to_frame(coord1)
# trans.shape -> (N, 3), rot.shape -> (N, 3, 3)
frame = trans, rot
coord_recon = pdbb.frame_to_coord(frame)

# FAPE (Frame Aligned Position Error)
frame1 = pdbb.coord_to_frame(coord1)
frame2 = pdbb.coord_to_frame(coord2)
fape = pdbb.FAPE(frame1, frame2)

# batched calculation is applicable
ca_batch1 = np.repeat(np.expand_dims(ca1, axis=0), 100, axis=0)
ca_batch2 = np.repeat(np.expand_dims(ca2, axis=0), 100, axis=0)
bb_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)

rmsd_batch = pdbb.rmsd(ca_batch1, ca_batch2)
sup_batch1, sup_batch2 = pdbb.kabsch(ca_batch1, ca_batch2)
torsion_batch = pdbb.torsion_angles(bb_batch)
distmat_batch = pdbb.distance_matrix(ca_batch1)

coord_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)
frame_batch = pdbb.coord_to_frame(coord_batch)
coord_recon_batch = pdbb.frame_to_coord(frame_batch)
fape_batch = pdbb.FAPE(frame_batch, frame_batch)

# all against all RMSD calculation
rmsd_matrix = pdbb.rmsd_many_vs_many(ca_batch1)

Requirement

  • python3
  • numpy
  • pandas
  • pytorch
  • einops
  • pytorch3d

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pdbbasic-0.7.8-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file pdbbasic-0.7.8-py3-none-any.whl.

File metadata

  • Download URL: pdbbasic-0.7.8-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for pdbbasic-0.7.8-py3-none-any.whl
Algorithm Hash digest
SHA256 64a61c9abf7cf3a7ea6f3c344239abacbfe3cb7d4232f5eece6260dc292fd942
MD5 8475aa3ad35728b8fb23a0571a92cb3f
BLAKE2b-256 30939b2be00d6317a14f41ad4d1b57af8e9bd18a325457591b219710932e4b25

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page