Skip to main content

PennyLane-Lightning plugin

Project description

The Lightning plugin ecosystem provides fast state-vector and tensor-network simulators written in C++.

PennyLane is a cross-platform Python library for quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations. PennyLane supports Python 3.11 and above.

Backends

PennyLane-Lightning high performance simulators include the following backends:

  • lightning.qubit: a fast state-vector simulator written in C++ with optional OpenMP additions and parallelized gate-level SIMD kernels.
  • lightning.kokkos: a state-vector simulator written with Kokkos. It can exploit the inherent parallelism of modern processing units supporting the OpenMP, CUDA or HIP programming models. It also offers distributed state-vector simulation via MPI.
  • lightning.amdgpu: a state-vector simulator specifically for AMD GPUs. This device is an alias of our lightning.kokkos simulator.
  • lightning.gpu: a state-vector simulator based on the NVIDIA cuQuantum SDK. It notably implements a distributed state-vector simulator based on MPI.
  • lightning.tensor: a tensor-network simulator based on the NVIDIA cuQuantum SDK. The supported methods are Matrix Product State (MPS) and Exact Tensor Network (TN).

If you're not sure which simulator to use, check out our PennyLane Performance page.

Installation

The following table summarizes the supported platforms and the primary installation mode:

Linux x86 Linux ARM MacOS ARM Windows
Lightning-Qubit pip pip pip pip
Lightning-Kokkos (OMP) pip pip pip
Lightning-Kokkos (CUDA) source source
Lightning-Kokkos (HIP) source source
Lightning-Kokkos (MPI) source
Lightning-AMDGPU pip source
Lightning-GPU pip pip
Lightning-GPU (MPI) source
Lightning-Tensor pip pip

For Lightning-AMDGPU, pre-built wheels are available for MI300 series GPU for ROCm 7.0 and greater. For older architecture and ROCm versions, please install from source.

To install the latest stable version of these plugins, check out the PennyLane installation guide.

If you wish to install the latest development version, instructions for building from source are also available for each backend.

Docker support

Docker images for the various backends are found on the PennyLane Docker Hub page, where a detailed description about PennyLane Docker support can be found. Briefly, one can build the Docker Lightning images using:

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
docker build -f docker/Dockerfile --target ${TARGET} .

where ${TARGET} is one of the following:

  • wheel-lightning-qubit
  • wheel-lightning-gpu
  • wheel-lightning-kokkos-openmp
  • wheel-lightning-kokkos-cuda
  • wheel-lightning-kokkos-rocm

Contributing

We welcome contributions - simply fork the repository of this plugin, and then make a pull request containing your contribution. All contributors to this plugin will be listed as authors on the releases.
We also encourage bug reports, suggestions for new features and enhancements, and even links to cool projects or applications built on PennyLane.

Black & Pylint

If you contribute to the Python code, please mind the following. The Python code is formatted with the PEP 8 compliant opinionated formatter Black. We set a line width of a 100 characters. The Python code is statically analyzed with Pylint. We set up a pre-commit hook (see Git hooks) to run both of these on git commit. Please make your best effort to comply with black and pylint before using disabling pragmas (e.g. # pylint: disable=missing-function-docstring).

Authors

Lightning is the work of many contributors.

If you are using Lightning for research, please cite:

@misc{
    asadi2024,
    title={{Hybrid quantum programming with PennyLane Lightning on HPC platforms}},
    author={Ali Asadi and Amintor Dusko and Chae-Yeun Park and Vincent Michaud-Rioux and Isidor Schoch and Shuli Shu and Trevor Vincent and Lee James O'Riordan},
    year={2024},
    eprint={2403.02512},
    archivePrefix={arXiv},
    primaryClass={quant-ph},
    url={https://arxiv.org/abs/2403.02512},
}

Support

If you are having issues, please let us know by posting the issue on our Github issue tracker, or by asking a question in the forum.

License

The Lightning plugins are free and open source, released under the Apache License, Version 2.0.
The Lightning-GPU and Lightning-Tensor plugins make use of the NVIDIA cuQuantum SDK headers to enable the device bindings to PennyLane, which are held to their own respective license.

Acknowledgements

PennyLane Lightning makes use of the following libraries and tools, which are under their own respective licenses:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pennylane_lightning-0.44.0.tar.gz (791.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pennylane_lightning-0.44.0-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

pennylane_lightning-0.44.0-cp314-cp314-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.14Windows x86-64

pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pennylane_lightning-0.44.0-cp314-cp314-macosx_13_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.14macOS 13.0+ ARM64

pennylane_lightning-0.44.0-cp313-cp313-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.13Windows x86-64

pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pennylane_lightning-0.44.0-cp313-cp313-macosx_13_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.13macOS 13.0+ ARM64

pennylane_lightning-0.44.0-cp312-cp312-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.12Windows x86-64

pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pennylane_lightning-0.44.0-cp312-cp312-macosx_13_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 13.0+ ARM64

pennylane_lightning-0.44.0-cp311-cp311-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.11Windows x86-64

pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pennylane_lightning-0.44.0-cp311-cp311-macosx_13_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 13.0+ ARM64

File details

Details for the file pennylane_lightning-0.44.0.tar.gz.

File metadata

  • Download URL: pennylane_lightning-0.44.0.tar.gz
  • Upload date:
  • Size: 791.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.13

File hashes

Hashes for pennylane_lightning-0.44.0.tar.gz
Algorithm Hash digest
SHA256 4d7383ab8b53af17d14f5b9985afa867a0cec10d224bd068259d824eba812e7a
MD5 2f8a5ac9a9cffe227ee99b98793d3862
BLAKE2b-256 ba41ce4d7728b0faf7c77c4e18e2bca77b6ba52c3cc43f5a321ea6596c963e9e

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a5a257f89c623565df68f987437de380495299b1271b935e1269717198668e71
MD5 6be1769d7e63614f05fd9ff5a18575a6
BLAKE2b-256 cfd1b681ae8546b264a4c9d999b8e57a3291cbf38edf39194d5416fbae19f8af

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 d3249c2e9ded832a6803970a1af7f88b87496eca15d8a4938b8302b35ee39fe5
MD5 c61217cbd2204f45a7d6f902e18523f0
BLAKE2b-256 27355650295cff51a2d0b68bf2da5af5b84149a7e5d1122560afbac70d3ff0eb

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dbe93215141a224b0a3d9cae28ca4b5827720a714a5e570ec7427488ff3c9b5d
MD5 b3f6b19abd8e2a2290e81092569cd935
BLAKE2b-256 2203152da2ee85eddf4bf520a9a25af4ee7bdd42479e25e294f378001ce35958

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 56e233fae5f5d0c6341ca2c2e34c55ffaf73896388abe07d8d03b5ec61c78d23
MD5 13acf85218c62131c1a8f34bd2ce8363
BLAKE2b-256 5af31e89da7d068dc738bc34ec6d2f9a9526899fc4b868f7f0ebaf283aa1786d

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp314-cp314-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp314-cp314-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 728e0f35806b0bd0359b408e672e28c5c6c5f0b93b45672bf6a8fd13c2d6eb27
MD5 7fcbba970c415950a53d32c5245fc919
BLAKE2b-256 402317befdcabe5d8d0dc3cdd9b581cf789a878dd4296a500006399cd5806da7

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 1c37449a9866be8a8b43e26db928cbd61c33399ac0fce2657c76f0bebb1928f2
MD5 33e0f658bc040e9f25921e4a03c01dbb
BLAKE2b-256 f67d8fe12f18795fa22240582a891f0cbc76249e63ef71fc003a47525ba426c2

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dfad857acc2bd9320f904c4a7029d07e43f9077e9a666110318553e54af23d85
MD5 f4a190fa96e892e7f60a1eb47b033e6f
BLAKE2b-256 1021197559f70fe3e86a2e4893828298105a0de7cf29c16999b2f6c732b897a6

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ac87864e38cb2f6113e841bac78ef679fd9be8d8759b2f55408c42c4f8fb8f21
MD5 f6791957b234a85e0d22a47ea11016f5
BLAKE2b-256 155394d0d59d35eec1978ada60229dd294179e3a94dbfd5956c12bb9e9f77011

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 7e87c20e3658b6e2c6d013cd881c95b1a82d05a2805d78e1193e14ed3a735b16
MD5 c2a0bf0cdea77a061c0eef51e710825f
BLAKE2b-256 e2f1d4d50c4ad286122f78323c02807ebe5353f8247c07b9a7b810ffc69b542a

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 26e7d79a816da3a659ceba554999d1781cc1829699f544ff733cc3dbe2c6f83c
MD5 5ee5cda3b3fdc7059634311a2ae9de3d
BLAKE2b-256 3c8a418d1a9f8e292d322a66eac83c8e4b4f48e01f24e629b9b496689412cc0f

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9e2030fcebea3cfc7e8d6fc4a5aa821704ffcc15ed4ba76bf653facb7d8ebe39
MD5 0c2daf9376f8edc092f1058d47e3bd4b
BLAKE2b-256 cd9830c3164b620f89dfec71c05359a1025e15d695a42dbdbc6350f664fc6b58

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aae687962962f2d2a8620740c7b0eb2de16aba40f080bec64519652e3a25fba3
MD5 4460684813033bafc000b1f3b157ea83
BLAKE2b-256 3522dfb5af72c9bf9f85bdf114be4204369894a2b9d9d205ed180df422ff93a0

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 89d84f6b24675f011695d7be4a6dbe7821224f5f96747413367135b5c53ae414
MD5 ebc61e0fe114ae57c54429464889130c
BLAKE2b-256 d476c2339362329f468981b4ac24d59982ab06e9a3c4561928d0a4c1bd0d4720

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6809ea3a0982c478b1434aaf0e78ca19bdafbddf27ea9ed04378cde5494fe1a7
MD5 d4661af2d4900a93a30102e78c408214
BLAKE2b-256 272331695ff221cb7ff4574c9567ce24d431962c42d4692c48c037a048cdb56d

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4a1cb8827a05e58596f632fb02e014392d92c38a2e471817cd0cb826cb995305
MD5 868fb126b7cb588ef2c85094055289ce
BLAKE2b-256 2571703d4df1fd010fab517337ff12403ee4d040b48d45663c61145e80a36f06

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 048df8e23a62bde4046162c1229ecfdd8cb7f17b8a16cb5a7c6f68280aff024f
MD5 7a2c6ea92c04ce78f606c11dcd2e6e6d
BLAKE2b-256 c253728b93e80ef6a968d715c11c0de3ee2953cc934182a4d8de454aa6d5eb3e

See more details on using hashes here.

File details

Details for the file pennylane_lightning-0.44.0-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pennylane_lightning-0.44.0-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9a492cb23d631b83f1493e1eb3ff0437e9e29c41921b0ed41d4cff7f016b98b8
MD5 56f2c106ff8bf485b9505d3e2af02041
BLAKE2b-256 027041e014c3fa7c94839da771acd6d293e597c5ee493ef91834bcfe7bf8743a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page