Skip to main content

The supervised learning framework based on perceptron for tabular data.

Project description

perming

perming: Perceptron Models Are Training on Windows Platform with Default GPU Acceleration.

  • p: use polars or pandas to read dataset.
  • per: perceptron algorithm used as based model.
  • m: models concluding regressier and classifier (binary & multiple).
  • ing: training on windows platform with strong gpu acceleration.

init backend

refer to https://pytorch.org/get-started/locally/ and choose the PyTorch that support cuda compatible with your Windows. The current software version only supports Windows system.

test with: PyTorch 1.7.1+cu101

general model

GENERAL_BOX(Box) Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)
device: str="cuda"
*
activation: str="relu"
inplace_on: bool=True
criterion: str="CrossEntropyLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier or Regressier Based on Basic Information of the Dataset Obtained through Data Preprocessing and Feature Engineering.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Numpy Dataset into torch.utils.data.DataLoader.
train_val num_epochs: int=2
tolerance: float=1e-3
patience: int=10
interval: int=100
backend: str="threading"
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.

common models (cuda first)

  • Regression
Regressier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str="relu"
criterion: str="MSELoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Regressier Based on Basic Information of the Regression Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=1.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str="threading"
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test / Test Module Only Show with Loss at 3 Stages: Train, Test, Val
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Binary-classification
Binarier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str="relu"
criterion: str="BCELoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Binary-classification Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str="threading"
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str="accuracy"
sort_state: bool=True
Test Module Show with Correct Class and Loss at 3 Stages: Train, Test, Val
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Multi-classification
Multipler Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str="relu"
criterion: str="CrossEntropyLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes>2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Multi-classification Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str="threading"
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Multi-outputs
Ranker Parameters Meaning
__init__ input_: int
num_outputs: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str="relu"
criterion: str="MultiLabelSoftMarginLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Ranker Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with (n_samples, n_outputs).
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Multi-outputs Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str="threading"
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.

prefer replace target shape (n,1) with shape (n,) using numpy.squeeze(input_matrix)

pip install

download latest version:

git clone https://github.com/linjing-lab/easy-pytorch.git
cd easy-pytorch/released_box
pip install -e . --verbose

download stable version:

pip install perming --upgrade

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

perming-1.4.3-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file perming-1.4.3-py3-none-any.whl.

File metadata

  • Download URL: perming-1.4.3-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.0.0 pkginfo/1.8.2 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.12

File hashes

Hashes for perming-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 38aa39eff5ed2820a7cef109228c27307231c28413c8ac1f0ecccbccc1242c54
MD5 360b627722cb2d4f075dfa4ae2f77156
BLAKE2b-256 1d6236a8d38eb46c135b8ce9fca0148c9707fe2acd44d8db65eca84df9c78f7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page