Skip to main content

The supervised learning framework based on perceptron for tabular data.

Project description

perming

perming: Perceptron Models Are Training on Windows Platform with Default GPU Acceleration.

  • p: use polars or pandas to read dataset.
  • per: perceptron algorithm used as based model.
  • m: models include Box, Regressier, Binarier, Mutipler and Ranker.
  • ing: training on windows platform with strong gpu acceleration.

init backend

refer to https://pytorch.org/get-started/locally/ and choose PyTorch that support cuda compatible with your Windows.

tests with: PyTorch 1.7.1+cu101

parameters

init:

  • input_: int, feature dimensions of tabular datasets after extract, transform, load from any data sources.
  • num_classes: int, define numbers of classes or outputs after users defined the type of task with layer output.
  • hidden_layer_sizes: Tuple[int]=(100,), define numbers and sizes of hidden layers to enhance model representation.
  • device: str='cuda', configure training and validation device with torch.device options. 'cuda' or 'cpu'.
  • activation: str='relu', configure activation function combined with subsequent learning task. see _activate in open models.
  • inplace_on: bool=False, configure whether to enable inplace=True on activation. False or True. (manually set in Box)
  • criterion: str='CrossEntropyLoss', configure loss criterion with compatible learning task output. see _criterion in open models.
  • solver: str='adam', configure inner optimizer serve as learning solver for learning task. see _solver in _utils/BaseModel.
  • batch_size: int=32, define batch size on loaded dataset of one epoch training process. any int value > 0. (prefer 2^n)
  • learning_rate_init: float=1e-2, define initial learning rate of solver input param controled by inner assertion. (1e-6, 1.0).
  • lr_scheduler: Optional[str]=None, configure scheduler about learning rate decay for compatible use. see _scheduler in _utils/BaseModel.

data_loader:

  • features: TabularData, manually input by users.
  • target: TabularData, manually input by users.
  • ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}, define by users.
  • worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}, manually set by users need.
  • random_seed: Optional[int]=None, manually set any int value by users to fixed sequence.

train_val:

  • num_epochs: int=2, define numbers of epochs in main training cycle. any int value > 0.
  • interval: int=100, define console print length of whole epochs by interval. any int value > 0.
  • tolerance: float=1e-3, define tolerance used to set inner break sensitivity. (1e-9, 1.0).
  • patience: int=10, define value coordinate with tolerance to expand detect length. [10, 100].
  • backend: str='threading', configure accelerate backend used in inner process. 'threading', 'multiprocessing', 'loky'.
  • n_jobs: int=-1, define numbers of jobs with manually set by users need. -1 or any int value > 0.
  • early_stop: bool=False, define whether to enable early_stop process. False or True.

test:

  • sort_by: str='accuracy', configure sorted ways of correct_class. 'numbers', 'accuracy', 'num-total'.
  • sort_state: bool=True, configure sorted state of correct_class. False or True.

save or load:

  • con: bool=True, configure whether to print model.state_dict(). False or True.
  • dir: dir='./model', configure model path that save to or load from. correct path defined by users.

general model

GENERAL_BOX(Box) Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)
device: str='cuda'
*
activation: str='relu'
inplace_on: bool=False
criterion: str='CrossEntropyLoss'
solver: str='adam'
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier or Regressier Based on Basic Information of the Dataset Obtained through Data Preprocessing and Feature Engineering.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Numpy Dataset into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str='threading'
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str='accuracy'
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save con: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by con.
load con: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by con.

common models (cuda first)

  • Regression
Regressier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str='relu'
criterion: str='MSELoss'
solver: str='adam'
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Regressier Based on Basic Information of the Regression Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=1.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str='threading'
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test / Test Module Only Show with Loss at 3 Stages: Train, Test, Val
save con: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by con.
load con: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by con.
  • Binary-classification
Binarier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str='relu'
criterion: str='BCELoss'
solver: str='adam'
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Binary-classification Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str='threading'
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str='accuracy'
sort_state: bool=True
Test Module con with Correct Class and Loss at 3 Stages: Train, Test, Val
save con: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by con.
load con: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by con.
  • Multi-classification
Multipler Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str='relu'
criterion: str='CrossEntropyLoss'
solver: str='adam'
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes>2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Multi-classification Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str='threading'
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str='accuracy'
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save con: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by con.
load con: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by con.
  • Multi-outputs
Ranker Parameters Meaning
__init__ input_: int
num_outputs: int
hidden_layer_sizes: Tuple[int]=(100,)
*
activation: str='relu'
criterion: str='MultiLabelSoftMarginLoss'
solver: str='adam'
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Ranker Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with (n_samples, n_outputs).
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Multi-outputs Dataset with Numpy format into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
tolerance: float=1e-3
patience: int=10
backend: str='threading'
n_jobs: int=-1
early_stop: bool=False
Using num_epochs, tolerance, patience to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str='accuracy'
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save con: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by con.
load con: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by con.

prefer replace target shape (n,1) with shape (n,) using numpy.squeeze(target), users can search and combine more predefined options in submodules and its __doc__ of each open classes.

pip install

download latest version:

git clone https://github.com/linjing-lab/easy-pytorch.git
cd easy-pytorch/released_box
pip install -e . --verbose

download stable version:

pip install perming --upgrade

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

perming-1.7.1-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file perming-1.7.1-py3-none-any.whl.

File metadata

  • Download URL: perming-1.7.1-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.0.0 pkginfo/1.8.2 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.12

File hashes

Hashes for perming-1.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ddd1af2fb709054c714ae96070941dac38b78f507e23d154f85f7d67dc98fd3e
MD5 81d203c0c01d36d08bfa5357170b5921
BLAKE2b-256 11ca9d0717b2c9ccfb18a8adecd268ce12d02fa605f07cc32e38b0cbf4d36f77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page