Library to access Wacom's Personal Knowledge graph.
Project description
Wacom Personal Knowledge Library
The library and the cloud services are still under development. The required access tokens are only available for selected partner companies.
:danger: Its is still under development, so we do not recommend using it yet for production environments. Moreover, it is not following any formal QA and release process, yet.
Introduction
In knowledge management there is a distinction between data, information and knowledge. In the domain of digital ink this means:
- Data - The equivalent would be the ink strokes
- Information - After using handwriting-, shape-, math-, or other recognition processes ink strokes are converted into machine readable content, such as text, shapes, math representations, other other digital content
- Knowledge / Semantics - Beyond recognition content needs to be semantically analysed to become semantically understood based on a shared common knowledge.
The following illustration shows the different layers of knowledge:
For handling semantics, Wacom introduced the Wacom Personal Knowledge (WPK) cloud service to manage personal ontologies and its associated personal knowledge graph.
This library provide simplified access to Wacom's personal knowledge cloud service. It contains:
- Basic datastructures for Ontology object and entities from the knowledge graph
- Clients for the REST APIs
- Connector for Wikidata public knowledge graph
Ontology service:
- List all Ontology structures
- Modify Ontology structures
- Delete Ontology structures
Entity service:
- List all entities
- Add entities to knowledge graph
- Access object properties
Technology stack
Domain Knowledge
The tasks of the ontology within Wacom's personal knowledge system is to formalised the domain the technology is used in, such as education-, smart home-, or creative domein. The domain model will be the foundation for the entities collected within the knowledge graph, describing real world concepts in a formal language understood by artificial intelligence system:
- Foundation for structured data, knowledge representation as concepts and relations among concepts
- Being explicit definitions of shared vocabularies for interoperability
- Being actionable fragments of explicit knowledge that engines can use for inferencing (Reasoning)
- Can be used for problem solving
An ontology defines (specifies) the concepts, relationships, and other distinctions that are relevant for modelling a domain.
Knowledge Graph
- Knowledge graph is generated from unstructured and structured knowledge sources
- Contains all structured knowledge gathered from all sources
- Foundation for all semantic algorithms
Semantic Technology
- Extract knowledge from various sources (Connectors)
- Linking words to knowledge entities from graph in a given text (Ontology-based Named Entity Linking)
- Enables a smart search functionality which understands the context and finds related documents (Semantic Search)
Functionality
Access API
The personal knowledge graph backend is implement as a multi-tenancy system. Thus, several tenants can be logically separated from each other and different organisations can build their one knowledge graph.
In general, a tenant with their users, groups, and entities are logically separated. Physically the entities are store in the same instance of the Wacom Personal Knowledge (WPK) backend database system.
The user management is rather limited, each organisation must provide their own authentication service and user management. The backend only has a reference of the user (“shadow user”) by an external user id.
The management of tenants is limited to the system owner - Wacom -, as it requires a tenant management API key. While users for each tenant can be created by the owner of the Tenant API Key. You will receive this token from the system owner after the creation of the tenant.
:warning: Store the Tenant API Key in a secure key store, as attackers can use the key to harm your system.
The Tenant API Key should be only used by your authentication service to create shadow users and to login your user into the WPK backend. After a successful user login, you will receive a token which can be used by the user to create, update, or delete entities and relations.
The following illustration summarizes the flows for creation of tenant and users:
The organisation itself needs to implement their own authentication service which:
- handles the users and their passwords,
- controls the personal data of the users,
- connects the users with the WPK backend and share with them the user token.
The WPK backend only manages the access levels of the entities and the group management for users. The illustration shows how the access token is received from the WPK endpoint:
Entity API
The entities used within the knowledge graph and the relationship among them is defined within an ontology that is manage with Wacom Ontology Management System (WOMS).
An entity within the personal knowledge graphs consist of these major parts:
- Icon - a visual representation of the entity, for instance a portrait of a person.
- URI - a unique resource identifier of an entity in the graph.
- Type - the type links to the defined concept class in the ontology.
- Labels - labels are the word(s) use in a language for the concept.
- Description - a short abstract that describes the entity.
- Literals - literals are properties of an entity, such as first name of a person. The ontology defines all literals of the concept class as well as its data type.
- Relations - the relationship among different entities is described using relations.
The following illustration provides an example for an entity:
Entity content
Entities in general are language-independent as across nationalities or cultures we only use different scripts and words for a shared instance of a concept.
Let's take Leonardo da Vinci as an example. The ontology defines the concept of a Person, a human being. Now, in English its label would be Leonardo da Vinci, while in Japanese レオナルド・ダ・ヴィンチ. Moreover, he is also known as Leonardo di ser Piero da Vinci or ダ・ビンチ.
Labels
Now, in the given example all words that a assigned to the concept are labels. The label Leonardo da Vinci is stored in the backend with an additional language code, e.g. en.
There is always a main label, which refers to the most common or official name of entity. Another example would be Wacom, where Wacom Co., Ltd. is the official name while Wacom is commonly used and be considered as an alias.
:info: For the language code the ISO 639-1:2002, codes for the representation of names of languages—Part 1: Alpha-2 code. Read more, here
Samples
Entity handling
This samples shows how to work with graph service.
import urllib3
from typing import Optional, List, Dict
from knowledge.base.entity import LanguageCode, Description, Label
from knowledge.base.ontology import OntologyClassReference, OntologyPropertyReference, ThingObject, ObjectProperty
from knowledge.services.graph import WacomKnowledgeService
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# ------------------------------- User credential ----------------------------------------------------------------------
TENANT_KEY: str = '<TENANT_ID>'
EXTERNAL_USER_ID: str = '<EXTERNAL_USER_ID_TAG>'
# ------------------------------- Knowledge entities -------------------------------------------------------------------
LEONARDO_DA_VINCI: str = 'Leonardo da Vinci'
SELF_PORTRAIT_STYLE: str = 'self-portrait'
# ------------------------------- Ontology class names -----------------------------------------------------------------
THING_OBJECT: OntologyClassReference = OntologyClassReference('wacom', 'core', 'Thing')
"""
The Ontology will contain a Thing class where is the root class in the hierarchy.
"""
ARTWORK_CLASS: OntologyClassReference = OntologyClassReference('wacom', 'creative', 'VisualArtwork')
PERSON_CLASS: OntologyClassReference = OntologyClassReference('wacom', 'core', 'Person')
ART_STYLE_CLASS: OntologyClassReference = OntologyClassReference.parse('wacom:creative#ArtStyle')
IS_CREATOR: OntologyPropertyReference = OntologyPropertyReference('wacom', 'core', 'created')
HAS_TOPIC: OntologyPropertyReference = OntologyPropertyReference.parse('wacom:core#hasTopic')
CREATED: OntologyPropertyReference = OntologyPropertyReference.parse('wacom:core#created')
HAS_ART_STYLE: OntologyPropertyReference = OntologyPropertyReference.parse('wacom:creative#hasArtstyle')
if __name__ == '__main__':
# Wacom personal knowledge REST API Client
knowledge_client: WacomKnowledgeService = WacomKnowledgeService(
application_name="Wacom Knowledge Listing",
service_url='https://stage-private-knowledge.wacom.com')
knowledge_client.verify_calls = False # TODO: Remove if it is officially deployed
# Use special tenant for testing: Unit-test tenant
user_token: str = knowledge_client.request_user_token(TENANT_KEY, EXTERNAL_USER_ID)
page_id: Optional[str] = None
page_number: int = 1
entity_count: int = 0
print('-----------------------------------------------------------------------------------------------------------')
print(' First step: Find Leonardo da Vinci in the knowledge graph.')
print('-----------------------------------------------------------------------------------------------------------')
res_entities, next_search_page = knowledge_client.search_labels(auth_key=user_token, search_term=LEONARDO_DA_VINCI,
language_code=LanguageCode('en_US'), limit=1000)
leo: Optional[ThingObject] = None
s_idx: int = 1
for entity in res_entities:
# Entity must be a person and the label match with full string
if entity.concept_type == PERSON_CLASS and LEONARDO_DA_VINCI in [l.content for l in entity.label]:
leo = entity
break
print('-----------------------------------------------------------------------------------------------------------')
print(' What artwork exists in the knowledge graph.')
print('-----------------------------------------------------------------------------------------------------------')
relations_dict: Dict[OntologyPropertyReference, ObjectProperty] = knowledge_client.relations(auth_key=user_token,
uri=leo.uri)
print(f' Artwork of {leo.label}')
print('-----------------------------------------------------------------------------------------------------------')
idx: int = 1
if CREATED in relations_dict:
for e in relations_dict[CREATED].outgoing_relations:
print(f' [{idx}] {e.uri}: {e.label}')
idx += 1
print('-----------------------------------------------------------------------------------------------------------')
print(' Let us create a new piece of artwork.')
print('-----------------------------------------------------------------------------------------------------------')
# Main labels for entity
artwork_labels: List[Label] = [
Label('Ginevra Gherardini', LanguageCode('en_US')),
Label('Ginevra Gherardini', LanguageCode('de_DE'))
]
# Alias labels for entity
artwork_alias: List[Label] = [
Label("Ginevra", LanguageCode('en_US')),
Label("Ginevra", LanguageCode('de_DE'))
]
# Topic description
artwork_description: List[Description] = [
Description('Oil painting of Mona Lisa\' sister', LanguageCode('en_US')),
Description('Ölgemälde von Mona Lisa\' Schwester', LanguageCode('de_DE'))
]
# Topic
artwork_object: ThingObject = ThingObject(label=artwork_labels, concept_type=ARTWORK_CLASS,
description=artwork_description)
artwork_object.alias = artwork_alias
print(f' Create: {artwork_object}')
# Create artwork
artwork_entity_uri: str = knowledge_client.create_entity(user_token, artwork_object)
print(f' Entity URI: {artwork_entity_uri}')
# Create relation between Leonardo da Vinci and artwork
knowledge_client.create_relation(auth_key=user_token, source=leo.uri, relation=IS_CREATOR,
target=artwork_entity_uri)
relations_dict = knowledge_client.relations(auth_key=user_token, uri=artwork_entity_uri)
for ontology_property, object_property in relations_dict.items():
print(f' {object_property}')
# You will see that wacom:core#isCreatedBy is automatically inferred as relation as it is the inverse property of
# wacom:core#created.
# Now, more search options
res_entities, next_search_page = knowledge_client.search_description(user_token, 'Michelangelo\'s Sistine Chapel',
LanguageCode('en_US'), limit=1000)
print('-----------------------------------------------------------------------------------------------------------')
print(' Search results. Description: "Michelangelo\'s Sistine Chapel"')
print('-----------------------------------------------------------------------------------------------------------')
s_idx: int = 1
for e in res_entities:
print(e)
# Now, let's search all artwork that has the art style self-portrait
res_entities, next_search_page = knowledge_client.search_labels(auth_key=user_token,
search_term=SELF_PORTRAIT_STYLE,
language_code=LanguageCode('en_US'), limit=1000)
art_style: Optional[ThingObject] = None
s_idx: int = 1
for entity in res_entities:
# Entity must be a person and the label match with full string
if entity.concept_type == ART_STYLE_CLASS and SELF_PORTRAIT_STYLE in [l.content for l in entity.label]:
art_style = entity
break
res_entities, next_search_page = knowledge_client.search_relation(auth_key=user_token,
subject_uri=None,
relation=HAS_ART_STYLE,
object_uri=art_style.uri,
language_code=LanguageCode('en_US'))
print('-----------------------------------------------------------------------------------------------------------')
print(' Search results. Relation: relation:=has_topic object_uri:= unknown')
print('-----------------------------------------------------------------------------------------------------------')
s_idx: int = 1
for e in res_entities:
print(e)
s_idx += 1
# Finally, the activation function retrieving the related identities to a pre-defined depth.
entities, relations = knowledge_client.activations(auth_key=user_token,
uris=[leo.uri],
depth=1)
print('-----------------------------------------------------------------------------------------------------------')
print(f'Activation. URI: {leo.uri}')
print('-----------------------------------------------------------------------------------------------------------')
s_idx: int = 1
for e in res_entities:
print(e)
s_idx += 1
# All relations
print('-----------------------------------------------------------------------------------------------------------')
for r in relations:
print(f'Subject: {r[0]} Predicate: {r[1]} Object: {r[2]}')
print('-----------------------------------------------------------------------------------------------------------')
page_id = None
# Listing all entities which have the type
idx: int = 1
while True:
# pull
entities, total_number, next_page_id = knowledge_client.listing(user_token, ART_STYLE_CLASS, page_id=page_id,
limit=100)
pulled_entities: int = len(entities)
entity_count += pulled_entities
print('-------------------------------------------------------------------------------------------------------')
print(f' Page: {page_number} Number of entities: {len(entities)} ({entity_count}/{total_number}) '
f'Next page id: {next_page_id}')
print('-------------------------------------------------------------------------------------------------------')
for e in entities:
print(e)
idx += 1
if pulled_entities == 0:
break
page_number += 1
page_id = next_page_id
print()
# Delete all personal entities for this user
while True:
# pull
entities, total_number, next_page_id = knowledge_client.listing(user_token, THING_OBJECT, page_id=page_id,
limit=100)
pulled_entities: int = len(entities)
if pulled_entities == 0:
break
delete_uris: List[str] = [e.uri for e in entities]
print(f'Cleanup. Delete entities: {delete_uris}')
knowledge_client.delete_entities(auth_key=user_token, uris=delete_uris, force=True)
page_number += 1
page_id = next_page_id
print('-----------------------------------------------------------------------------------------------------------')
Named Entity Linking
Performing Named Entity Linking (NEL) on text and Universal Ink Model.
from typing import List, Dict
import urllib3
from knowledge.services.graph import WacomKnowledgeService
from knowledge.base.entity import LanguageCode
from knowledge.nel.base import KnowledgeGraphEntity
from knowledge.nel.engine import WacomEntityLinkingEngine
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# Constants
LANGUAGE_CODE: LanguageCode = LanguageCode("en_US")
TEXT: str = "Leonardo da Vinci painted the Mona Lisa."
# User credential
TENANT_KEY: str = '<TENANT_ID>'
EXTERNAL_USER_ID: str = '<EXTERNAL_USER_ID_TAG>'
if __name__ == '__main__':
# Wacom personal knowledge REST API Client
knowledge_client: WacomKnowledgeService = WacomKnowledgeService(
application_name="Named Entity Linking Knowledge access",
service_url='https://stage-private-knowledge.wacom.com')
knowledge_client.verify_calls = False # TODO: Remove if it is officially deployed
# Wacom Named Entity Linking
nel_client: WacomEntityLinkingEngine = WacomEntityLinkingEngine(
service_url=WacomEntityLinkingEngine.SERVICE_URL,
service_endpoint=WacomEntityLinkingEngine.SERVICE_ENDPOINT
)
nel_client.verify_calls = False # TODO: Remove if it is officially deployed
# Use special tenant for testing: Unit-test tenant
user_token: str = nel_client.request_user_token(TENANT_KEY, EXTERNAL_USER_ID)
entities: List[KnowledgeGraphEntity] = nel_client.\
link_personal_entities(auth_key=user_token, text=TEXT,
language_code=LANGUAGE_CODE)
idx: int = 1
print('-------------------------------------------------')
print(f'Text: "{TEXT}"@{LANGUAGE_CODE}')
print('-------------------------------------------------')
for e in entities:
print(e)
idx += 1
Access Management
The sample shows, how access to entities can be shared with a group of users or the tenant.
from typing import List
import urllib3
from knowledge.base.entity import LanguageCode, Label, Description
from knowledge.base.ontology import OntologyClassReference, ThingObject
from knowledge.services.base import WacomServiceException
from knowledge.services.graph import WacomKnowledgeService
from knowledge.services.group import GroupManagementServiceAPI, Group
from knowledge.services.users import UserManagementServiceAPI, User
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# User credential
TENANT_KEY: str = '<TENANT_ID>'
EXTERNAL_USER_ID: str = '<EXTERNAL_USER_ID_TAG>'
# Constants
TOPIC_CLASS: OntologyClassReference = OntologyClassReference('wacom', 'core', 'Topic')
def create_entity() -> ThingObject:
# Main labels for entity
topic_labels: List[Label] = [
Label('Hidden', LanguageCode('en_US')),
Label('Versteckt', LanguageCode('de_DE')),
Label('隠れた', LanguageCode('ja_JP'))
]
# Topic description
topic_description: List[Description] = [
Description('Hidden entity to explain access management.', LanguageCode('en_US')),
Description('Verstecke Entität, um die Zugriffsteuerung zu erlären.', LanguageCode('de_DE'))
]
# Topic
topic_object: ThingObject = ThingObject(label=topic_labels, concept_type=TOPIC_CLASS, description=topic_description)
return topic_object
if __name__ == '__main__':
# Wacom personal knowledge REST API Client
knowledge_client: WacomKnowledgeService = WacomKnowledgeService(
application_name="Wacom Knowledge Listing",
service_url='https://stage-private-knowledge.wacom.com')
knowledge_client.verify_calls = False # TODO: Remove if it is officially deployed
# User Management
user_management: UserManagementServiceAPI = UserManagementServiceAPI(
service_url='https://stage-private-knowledge.wacom.com')
user_management.verify_calls = False # TODO: Remove if it is officially deployed
# Group Management
group_management: GroupManagementServiceAPI = GroupManagementServiceAPI(
service_url='https://stage-private-knowledge.wacom.com')
group_management.verify_calls = False # TODO: Remove if it is officially deployed
admin_token: str = user_management.request_user_token(TENANT_KEY, EXTERNAL_USER_ID)
# Now, we create a users
u1, u1_token = user_management.create_user(TENANT_KEY, "u1")
u2, u2_token = user_management.create_user(TENANT_KEY, "u2")
u3, u3_token = user_management.create_user(TENANT_KEY, "u3")
# Now, let's create an entity
thing: ThingObject = create_entity()
entity_uri: str = knowledge_client.create_entity(u1_token, thing)
# Only user 1 can access the entity from cloud storage
my_thing: ThingObject = knowledge_client.entity(u1_token, entity_uri)
print(f'User is the owner of {my_thing.owner}')
# Now only user 1 has access to the personal entity
knowledge_client.entity(u1_token, entity_uri)
# Try to access the entity
try:
knowledge_client.entity(u2_token, entity_uri)
except WacomServiceException as we:
print(f"Expected exception as user 2 has no access to the personal entity of user 1. Exception: {we}")
# Try to access the entity
try:
knowledge_client.entity(u3_token, entity_uri)
except WacomServiceException as we:
print(f"Expected exception as user 3 has no access to the personal entity of user 1. Exception: {we}")
# Now, user 1 creates a group
g: Group = group_management.create_group(u1_token, "test-group")
# Shares the join key with user 2 and user 2 joins
group_management.join_group(u2_token, g.id, g.join_key)
# Share entity with group
group_management.add_entity_to_group(u1_token, g.id, entity_uri)
# Now, user 2 should have access
other_thing: ThingObject = knowledge_client.entity(u2_token, entity_uri)
print(f'User 2 is the owner of the thing: {other_thing.owner}')
# Try to access the entity
try:
knowledge_client.entity(u3_token, entity_uri)
except WacomServiceException as we:
print(f"Expected exception as user 3 still has no access to the personal entity of user 1. Exception: {we}")
# Un-share the entity
group_management.remove_entity_to_group(u1_token, g.id, entity_uri)
# Now, again no access
try:
knowledge_client.entity(u2_token, entity_uri)
except WacomServiceException as we:
print(f"Expected exception as user 2 has no access to the personal entity of user 1. Exception: {we}")
group_management.leave_group(u2_token, group_id=g.id)
# Now, share the entity with the whole tenant
my_thing.tenant_access_right.read = True
knowledge_client.update_entity(u1_token, my_thing)
# Now, all users can access the entity
knowledge_client.entity(u2_token, entity_uri)
knowledge_client.entity(u3_token, entity_uri)
# Finally, clean up
knowledge_client.delete_entity(u1_token, entity_uri, force=True)
# Remove users
user_management.delete_user(TENANT_KEY, u1.external_user_id, u1.id)
user_management.delete_user(TENANT_KEY, u2.external_user_id, u2.id)
user_management.delete_user(TENANT_KEY, u3.external_user_id, u3.id)
Ontology Creation
The samples shows how the ontology can be extended and new entities can be added using the added classes.
from typing import List, Optional
import urllib3
from knowledge.base.entity import OntologyContext, Label, LanguageCode, Description
from knowledge.base.ontology import DataPropertyType, OntologyClassReference, OntologyPropertyReference, ThingObject, \
DataProperty
from knowledge.services.graph import WacomKnowledgeService
from knowledge.services.ontology import OntologyService
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# User credential
TENANT_KEY: str = '<TENANT_ID>'
EXTERNAL_USER_ID: str = '<EXTERNAL_USER_ID_TAG>'
# Constants
LEONARDO_DA_VINCI: str = 'Leonardo da Vinci'
CONTEXT_NAME: str = 'base'
# Wacom Base Ontology Types
PERSON_TYPE: OntologyClassReference = OntologyClassReference.parse("wacom:core#Person")
# Demo Class
ARTIST_TYPE: OntologyClassReference = OntologyClassReference.parse("demo:creative#Artist")
# Demo Object property
IS_INSPIRED_BY: OntologyPropertyReference = OntologyPropertyReference.parse("demo:creative#isInspiredBy")
# Demo Data property
STAGE_NAME: OntologyPropertyReference = OntologyPropertyReference.parse("demo:creative#stageName")
def create_artist() -> ThingObject:
# Main labels for entity
topic_labels: List[Label] = [
Label('Gian Giacomo Caprotti', LanguageCode('en_US'))
]
# Topic description
topic_description: List[Description] = [
Description('Hidden entity to explain access management.', LanguageCode('en_US')),
Description('Verstecke Entität, um die Zugriffsteuerung zu erlären.', LanguageCode('de_DE'))
]
data_property: DataProperty = DataProperty(content='Salaj',
property_ref=STAGE_NAME,
language_code=LanguageCode('en_US'))
# Topic
artist: ThingObject = ThingObject(label=topic_labels, concept_type=ARTIST_TYPE, description=topic_description)
artist.add_data_property(data_property)
return artist
if __name__ == '__main__':
# Wacom Ontology REST API Client
ontology_client: OntologyService = OntologyService(service_url='https://stage-private-knowledge.wacom.com')
ontology_client.verify_calls = False # TODO: Remove if it is officially deployed
admin_token: str = ontology_client.request_user_token(TENANT_KEY, EXTERNAL_USER_ID)
knowledge_client: WacomKnowledgeService = WacomKnowledgeService(
application_name="Ontology Creation Demo",
service_url='https://stage-private-knowledge.wacom.com')
contexts: List[OntologyContext] = ontology_client.contexts(admin_token)
if len(contexts) == 0:
# First, create a context for the ontology
ontology_client.create_context(admin_token, name=CONTEXT_NAME, base_uri=f'demo:{CONTEXT_NAME}')
context_name: str = CONTEXT_NAME
else:
context_name: str = contexts[0].context
# Creating a class which is a subclass of a person
ontology_client.create_concept(admin_token, CONTEXT_NAME, reference=ARTIST_TYPE, subclass_of=PERSON_TYPE)
# Object properties
ontology_client.create_object_property(auth_key=admin_token, context=CONTEXT_NAME,
reference=IS_INSPIRED_BY, domain_cls=ARTIST_TYPE, range_cls=PERSON_TYPE,
inverse_of=None, subproperty_of=None)
# Data properties
ontology_client.create_data_property(auth_key=admin_token, context=CONTEXT_NAME,
reference=STAGE_NAME,
domain_cls=ARTIST_TYPE,
range_cls=DataPropertyType.STRING,
subproperty_of=None)
# Commit the changes of the ontology. This is very important to confirm changes.
ontology_client.commit(admin_token, CONTEXT_NAME)
# Trigger graph updater. After the update the ontology is available and the new entities can be created
knowledge_client.ontology_update(admin_token)
res_entities, next_search_page = knowledge_client.search_labels(auth_key=admin_token, search_term=LEONARDO_DA_VINCI,
language_code=LanguageCode('en_US'), limit=1000)
leo: Optional[ThingObject] = None
for entity in res_entities:
# Entity must be a person and the label match with full string
if entity.concept_type == PERSON_TYPE and LEONARDO_DA_VINCI in [la.content for la in entity.label]:
leo = entity
break
# Now, the new ontology is available and the new class and properties can be used
artist_student: ThingObject = create_artist()
artist_student_uri: str = knowledge_client.create_entity(admin_token, artist_student)
knowledge_client.create_relation(admin_token, artist_student_uri, IS_INSPIRED_BY, leo.uri)
Tools
The following samples show how to utilize the library to work with Wacom's Personal Knowledge.
Listing script
Listing the entities for tenant.
>> python listing.py [-h] [-u USER] [-t TENANT] [-r]
Parameters:
- -u USER, --user USER - External ID to identify user of the Wacom Personal Knowledge
- -t TENANT, --tenant TENANT - Tenant key to identify tenant
- -r, --relations (optional) - Requesting the relations for each entity
Dump script
Dump all entities of a user to a ndjson file.
>> python dump.py [-h] [-u USER] [-t TENANT] [-r] [-d DUMP]
Parameters:
- -u USER, --user USER - External ID to identify user of the Wacom Personal Knowledge
- -t TENANT, --tenant TENANT - Tenant key to identify tenant
- -r, --relations (optional) - Requesting the relations for each entity
- -d DUMP, --dump DUMP - Defines the location of an ndjson file
Push entities script
Pushing entities to knowledge graph.
>> python push_entities.py [-h] [-u USER] [-t TENANT] [-r]
Parameters:
- -u USER, --user USER - External ID to identify user of the Wacom Personal Knowledge
- -t TENANT, --tenant TENANT - Tenant key to identify tenant
- -i CACHE, --cache CACHE - Path to entities that must be imported.
Reset
Resets a tenant by removing entities, groups, and users.
>> python reset.py [-h] [-u USER] [-t TENANT]
Parameters:
- -u USER, --user USER - External ID to identify user of the Wacom Personal Knowledge
- -t TENANT, --tenant TENANT - Tenant key to identify tenant
- -i CACHE, --cache CACHE - Path to entities that must be imported.
Documentation
You can find more detailed technical documentation, here. API documentation is available here.
Contributing
Contribution guidelines are still work in progress.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file personal_knowledge_library-0.2.4.tar.gz
.
File metadata
- Download URL: personal_knowledge_library-0.2.4.tar.gz
- Upload date:
- Size: 161.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe8dd1ec240294d88f1c05e2bd1fa53dc29c81ec7ecccc0b8bc558ab86333f2e |
|
MD5 | 999cdc7b8a93e1289f9ff22686e9ae92 |
|
BLAKE2b-256 | 42b7a2fcc4c5309fa6bfc5b5d4973253251bbce35d51f565bdde1fad1994845d |
File details
Details for the file personal_knowledge_library-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: personal_knowledge_library-0.2.4-py3-none-any.whl
- Upload date:
- Size: 156.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77f88991ab642cee04e6ba5d0ea667e3615404da7d7696924792601d479c2c6d |
|
MD5 | b2ad476bb3937b9f3d60a30f125b74d6 |
|
BLAKE2b-256 | 95dbe69d015f1d9d793137a6eae2e34edd858d494c2bcdc217c70453fc03db8b |