Skip to main content

Personality and general experiment questionnaire processing methods.

Project description

personality_questionnaire

License python Checked with mypy

Personality and general questionnaire processing methods for various experiments.

Supported Questionnaires

  • BFI-2
  • VAS-F

Inputs

Questionnaire answers are...

  • read via command line interface
  • ints in a numpy ndarray (.npy)
  • ints in a csv file (.csv)
  • strings in a csv file (.csv)

Outputs

For BFI-2, the OCEAN and FACET values are scaled to the range [0..1] per participant.

For VAS-F, the relative values are calculated.

Setup

Install package from PyPI

pip install personality_questionnaire

Install package for development

git clone https://github.com/fodorad/personality_questionnaire
cd personality_questionnaire
pip install .
pip install -U -r requirements.txt
python -m unittest discover -s test

Quick start

Run interactive BFI-2 questionnaire

python personality_questionnaire/api.py --participant_id test --questionnaire bfi2

Run interactive VAS-F (pre- and post-)questionnaires

python personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag pre
python personality_questionnaire/api.py --participant_id test --questionnaire vasf --vasf_tag post

Projects using exordium

(2022) PersonalityLinMulT

LinMulT is trained for Big Five personality trait estimation using the First Impressions V2 dataset and sentiment estimation using the MOSI and MOSEI datasets.

What's next

  • Add support for the following questionnaires: HEXACO

Updates

  • 1.1.0: Add support for VAS-F and interactive CMD interface.
  • 1.0.0: Add support for BFI-2 and PyPI publish.

Contact

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

personality_questionnaire-1.1.1.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file personality_questionnaire-1.1.1.tar.gz.

File metadata

File hashes

Hashes for personality_questionnaire-1.1.1.tar.gz
Algorithm Hash digest
SHA256 db68d6c441d402e8b2e1ebf31dc3bce7a701691ade425ff67071cb57b419fc2c
MD5 63f6b2457a5004dfcf57959cd73f7500
BLAKE2b-256 11888fa229b926fdbeb39d58312974f0a94603262e0ea6d23d6b224a62b09e62

See more details on using hashes here.

File details

Details for the file personality_questionnaire-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for personality_questionnaire-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f3b0f8852a34cd12f05a67411e59fe0b0dcbf150139644f5df7a1c0f98e3ec74
MD5 6726f3f85afc2a9b81eaa493425808ec
BLAKE2b-256 13efde0cbd535854a3c908989363c727bbce79da0d9dcd77fbd5c7e8e4c7d621

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page