Compute the geometric features associated with each point's neighborhood:
Project description
📌 Description
Python wrapper around C++ helper to compute, for each point in a 3D point cloud, local geometric features in parallel on CPU:
️List of computed features️
- linearity
- planarity
- scattering
- verticality
- normal_x
- normal_y
- normal_z
- length
- surface
- volume
- curvature
- optimal neighborhood size
🧱 Installation
Pgeof will soon be available as pre compiled package on PyPI for both Linux and Windows OSes.
python -m pip install pgeof
building from sources
Pgeof depends on Eigen library and numpy headers at build time.
The good version of numpy will be fetched from PyPI automatically by the build system but your are responsible for providing
the path to the Eigen library you want to use (for example py using CXXFLAGS
variable on Linux or setting EIGEN_LIB_PATH
)
# clone project
git clone https://github.com/drprojects/point_geometric_features.git
cd point_geometric_features
# set the EIGEN_LIB_PATH if needed
export EIGEN_LIB_PATH="path_to_eigen_root_dir"
# build and install the package
python -m pip install .
conda
The following will install the project in a new pgeof
conda environment.
# clone project
git clone https://github.com/drprojects/point_geometric_features.git
cd point_geometric_features
# Installation in a new dedicated `pgeof` conda environment
bash install.sh
You can easily adapt install.sh
to install the project in an already-existing
environment.
🚀 Using Point Geometric Features
The pgeof
function should be used as follows:
from pgeof import pgeof
pgeof(
xyz, # [n_points, 3] float32 2D array - 3D point coordinates
nn, # [num_neighborhoods] uint32 1D array - Flattened neighbor indices. Make sure those are all positive, '-1' indices will either crash or silently compute incorrect features
nn_ptr, # [n_points+1] uint32 1D array - Pointers wrt `nn`. More specifically, the neighbors of point `i` are `nn[nn_ptr[i]:nn_ptr[i + 1]]`
k_min=1, # (optional, default=1) int - Minimum number of neighbors to consider for features computation. If a point has less, it will be given 0 features
k_step=-1, # (optional, default=-1) int - Step size to take when searching for the optimal neighborhood size for each point, following: http://lareg.ensg.eu/labos/matis/pdf/articles_revues/2015/isprs_wjhm_15.pdf. If k_step < 1, pgeof will not search for the optimal neighborhood and features will be computed based on the all available neighbors for each point
k_min_search=10, # (optional, default=10) int - Minimum neighborhood size at which to start when searching for the optimal neighborhood size for each point. It is advised to use a value of 10 or higher, for geometric features robustness
verbose=False) # (optional, default=False) bool - Whether computation progress should be printed out
# Print details on how pgeof works and expected input parameters
print(help(pgeof))
👇 You may check out the provided demo.py
script to get started.
python demo.py
⚠️ Please note the neighbors are expected in CSR format. This allows expressing neighborhoods of varying sizes with dense arrays (eg the output of a radius search). Here are examples of how to easily convert typical k-NN or radius-NN neighborhoods to CSR format.
from sklearn.neighbors import NearestNeighbors
import numpy as np
# Generate a random synthetic point cloud and k-nearest neighbors
num_points = 10000
k = 20
xyz = np.random.rand(num_points, 3)
kneigh = NearestNeighbors(n_neighbors=k).fit(xyz).kneighbors(xyz)
# Converting k-nearest neighbors to CSR format
nn_ptr = np.arange(num_points + 1) * k
nn = kneigh[1].flatten()
from sklearn.neighbors import NearestNeighbors
import numpy as np
# Generate a random synthetic point cloud and radius neighbors
num_points = 10000
radius = 0.1
xyz = np.random.rand(num_points, 3)
rneigh = NearestNeighbors(radius=radius).fit(xyz).radius_neighbors(xyz)
# Converting radius neighbors to CSR format
nn_ptr = np.r_[0, np.array([x.shape[0] for x in rneigh[1]]).cumsum()]
nn = np.concatenate(rneigh[1])
💳 Credits
This implementation was largely inspired from Superpoint Graph. The main modifications here allow:
- parallel computation on all points' local neighborhoods, with neighborhoods of varying sizes
- more geometric features
- optimal neighborhood search from this paper
- some corrections on geometric features computation
License
Point Geometric Features is licensed under the MIT License.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pgeof-0.0.1.tar.gz
.
File metadata
- Download URL: pgeof-0.0.1.tar.gz
- Upload date:
- Size: 12.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5647391817dca073cf4cc378eb4543b6d6cc5d0cac05c5bd42ac6265fe29905 |
|
MD5 | 89c14f117a298eadca571989ffc0bc53 |
|
BLAKE2b-256 | 4d4a94a91f3bc3e3645881275774974e84a489dd1de8de886e465de3b720442e |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 64.5 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 795de515a1cf6bf525c06595d0812ae2060e3d1cb4c0db57da1e62c705d87895 |
|
MD5 | 50a179a582ac90207c7a05e160dd4bb4 |
|
BLAKE2b-256 | 0463d8bf6db53534c200372cdc697ddca57c888cfafbc07590ae0fffce5da11e |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-win32.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-win32.whl
- Upload date:
- Size: 57.2 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 745529e3f9d7acb7de30b351e5cb252278ab16c0e8a1fca01c59c9ce5c5a7921 |
|
MD5 | 51d9ba256d188898b4db8f72f9c75b4d |
|
BLAKE2b-256 | a8acd25f7410e1a08d134e312aa6ccb954712e6d41a43537104ed50a175b65cd |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98c12a97d43305d651c48673b7a523ec207c01a75e53db7896ba77a9dc860931 |
|
MD5 | 76a7d95899fbfd80cd97d1159455a8ed |
|
BLAKE2b-256 | 37ada86667fc48d8586731656ef034c680b6c486505168c8c473837f6fe0259a |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-musllinux_1_1_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-musllinux_1_1_i686.whl
- Upload date:
- Size: 4.3 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bace6f19e21c9ad6ed49e125609c2376698c935f3072b36bccb4791fcbb3c530 |
|
MD5 | d4e487c6d8e0d5f8ea380025fe47ff75 |
|
BLAKE2b-256 | a14cca16aef19755340b1be9dde7adb8c12cba0b897bafdbc14b7cdb3a6fe360 |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e95db9e86c61d9bc10fd126b03b8dc2f34e5456c56b086e99d91c5433991880 |
|
MD5 | 4a908472cbafbec2ae0386753d1fba25 |
|
BLAKE2b-256 | 14b3d8cb8629c05c9fae2605edc46449790cf2a80f224741347a621e8f9d67e2 |
Provenance
File details
Details for the file pgeof-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 146336343bda675eeb3b84b68750157de99e13daff8351db4ebff6968eff4a0d |
|
MD5 | 5277c2abf9418a4286d2b3091aa50a74 |
|
BLAKE2b-256 | 5fc75a8957653b515c24bcfe2f3f984e0dad6965153d1b3427f29f00f236ae18 |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 64.5 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fdfaa2d64d6388e5f5aaaf8a49228375435d74e9b5fff71015946423407e7b1 |
|
MD5 | 2ffae31b0c9a08f53fdb3f966aa18d15 |
|
BLAKE2b-256 | c2fbffb7b580615df0a9c717d0fb0001f5d4f4fa57039b7fd7f81b42ae2d37c4 |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-win32.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-win32.whl
- Upload date:
- Size: 57.2 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4496dd00f5d4acd055520335fb499ea89a3c08e136d97959d29429a373ee7bb4 |
|
MD5 | b26186231823f898df8a68c09c335490 |
|
BLAKE2b-256 | 32180a8fbef9eef33f609ceeafa3776eb2cd0c744fc01d077e2bd59081e96e0e |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac7ac62ae0c46b6e7df4646b37906b661775b0668f1580c7d79de67bd2c295a0 |
|
MD5 | 1e126e8d3be990c68acfab616dedc755 |
|
BLAKE2b-256 | 699147c3701167942e40ff83300f849369de310b69a54b30f150a79d24ea5a84 |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-musllinux_1_1_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-musllinux_1_1_i686.whl
- Upload date:
- Size: 4.3 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfcd38c32b522a55d64fdd904f545a0076665292d2663c1971250e8d143cd055 |
|
MD5 | a38dd05f7beb66e17fc8bc0eb6441c07 |
|
BLAKE2b-256 | c6a0db8926e928610f8530c4c8d7162a778ddecc92b4585731ad8a00e396c992 |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6f29ae58773c8ac8ed48d5dc044f186fd7c1677d98d87d37a1281b17157af32 |
|
MD5 | af95ef9bfdd04ce1c6b1d9a93fe5cff2 |
|
BLAKE2b-256 | b0c4401873bbbd4098d1f0c88410f36f3f4a2d460f7bc1fb746f17a01ee81487 |
Provenance
File details
Details for the file pgeof-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 24ffc09e869e2a6ca86105dae636026c87afeecc63de64a1fc3ba1c2a9c22912 |
|
MD5 | 350a614f7a528cf736a5173725b613d4 |
|
BLAKE2b-256 | 7ad3e3381bc48cf83c6c55cbfdd2ce10a7197b6e324c6590f4fb0c87462c7cc0 |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 64.5 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c7410a89e0647e0dcece485a7b4ba4a6dc9ecf07c01eab5cc6106ce8bd8adc9 |
|
MD5 | c24133193a9970b5cbca6d517de957d7 |
|
BLAKE2b-256 | 8093af955db85eb9e57429d2f8e1056fe9bdf4f37774e269dbc66158fd3baa4d |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-win32.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-win32.whl
- Upload date:
- Size: 57.2 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed61d476bd4bf62b900c10ca1c2bd14798f73fcf47020f92dde2d289df4d432e |
|
MD5 | 3d614f735373d29f30b168aa7b232d5f |
|
BLAKE2b-256 | 6dab2e1278e8d07131cad6405abfdfb477bb7609d744d576e0cd790313ef8b17 |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90b5a7b99c5a6e755e728cb6bfe99e4fb349f6e0c057c957bd84e6a6f0c83bd1 |
|
MD5 | 43ad4f07c174f601acced720a9baa982 |
|
BLAKE2b-256 | d765ebd1141c5e1b6d776604d8df1446a49b1a2a33c5a3e627a8ea500e2a2367 |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-musllinux_1_1_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-musllinux_1_1_i686.whl
- Upload date:
- Size: 4.3 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 427af813b6214a474c649b979041e4a34a8b6523cd1ccccf0d8f33e531c2d5bf |
|
MD5 | c5abb260a3df394efafa09b6c4615dd1 |
|
BLAKE2b-256 | cfde71875f33001f8fe91b75cb142851a558e2e418ccc153f67945f991b59f10 |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bff9e173a682a440e21d2538d0190471e351302acfbeb1f667733d060bb5bca |
|
MD5 | 4a6c63c3036797c8d597eeed0132fc18 |
|
BLAKE2b-256 | 00bc507a96caf0fc3e057570621ada2837544146c6ca4197fc38b59e8e404688 |
Provenance
File details
Details for the file pgeof-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21c7d706908766eb71054126f9460c4f708c70b736399a32df8f36e7b0e31a7e |
|
MD5 | 0a6bd53512eeadd57bbfe804df7f4450 |
|
BLAKE2b-256 | a9c5027ab8d911d2c6072a8bf2dd540c5ac656ef34943e63041cf8776dafa36b |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 64.5 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13b1eb8c84da13eb1d5186ec927e7ad680634e2e63e3f622bd523e6ce14d8d3c |
|
MD5 | bbc2850ad10f11d8641beea2f44268bb |
|
BLAKE2b-256 | bcad8bee7ddecc926b25cb75852f532f0e10bdacf623086ba11c8cd95fa9b5f5 |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-win32.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-win32.whl
- Upload date:
- Size: 57.2 kB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81f34efdeaeaf001bd2c5c68a63999230ef730053f10634bf210ff9396720520 |
|
MD5 | 98cac58399fa710145b74ee5d85398cd |
|
BLAKE2b-256 | 2aac9d3ca3a88a1f467f01dd4b5ee08b4a5828fc193d925c831c69f87603a4a7 |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27ce636785230628094d00ed3a7f3ce0452ff19be32b9ff61a84f894f91d1a73 |
|
MD5 | 2e1af2bd7daa0172a0c9b7f00bd1d5f6 |
|
BLAKE2b-256 | ae8ee5a6664865526364bb74d02788a0b28608f4e115a4b06f0c6afe87b9cb3d |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-musllinux_1_1_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-musllinux_1_1_i686.whl
- Upload date:
- Size: 4.3 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10ca4fe8e28af597c6fed92789b5d47530baabbbaccdfbbca303cc9420cb2fe5 |
|
MD5 | 7a9340c9a57a899367fcee59c52e2e06 |
|
BLAKE2b-256 | 3c706cbf878af80a6bde042905d78df32318c3ca1bff8481dcb5282b5222b4e1 |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f42b012ae9f8dc890cb6c02106f0d11558ff517254ddd1b882c29cb4f693ce3 |
|
MD5 | 52c3980922e4e8735faa74da57462194 |
|
BLAKE2b-256 | 1005c208b1ed28767fd4fc98ae6108f64d1afce6d52cdec16ab4be58f84e8296 |
Provenance
File details
Details for the file pgeof-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pgeof-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5f0e33ee95b6b3322ac58ee55ca4db3bb5a7d4a734299b6d983fc621f2b13ae |
|
MD5 | 09cc8d5dbc5e981da747bd41dbb3ee88 |
|
BLAKE2b-256 | 60ac0b72162eae4f4ee76a687df2a867cb30c98a04497b8e2d0265bd523833eb |