Skip to main content

Compute the geometric features associated with each point's neighborhood:

Project description

Point Geometric Features

Linux python C++ license

📌 Description

Python wrapper around C++ helper to compute, for each point in a 3D point cloud, local geometric features in parallel on CPU:

️List of computed features️
  • linearity
  • planarity
  • scattering
  • verticality
  • normal_x
  • normal_y
  • normal_z
  • length
  • surface
  • volume
  • curvature
  • optimal neighborhood size

🧱 Installation

Pgeof will soon be available as pre compiled package on PyPI for both Linux and Windows OSes.

python -m pip install pgeof 

building from sources

Pgeof depends on Eigen library and numpy headers at build time. The good version of numpy will be fetched from PyPI automatically by the build system but your are responsible for providing the path to the Eigen library you want to use (for example py using CXXFLAGS variable on Linux or setting EIGEN_LIB_PATH)

# clone project
git clone https://github.com/drprojects/point_geometric_features.git
cd point_geometric_features

# set the EIGEN_LIB_PATH if needed
export EIGEN_LIB_PATH="path_to_eigen_root_dir"
# build and install the package
python -m pip install .

conda

The following will install the project in a new pgeof conda environment.

# clone project
git clone https://github.com/drprojects/point_geometric_features.git
cd point_geometric_features

# Installation in a new dedicated `pgeof` conda environment
bash install.sh

You can easily adapt install.sh to install the project in an already-existing environment.

🚀 Using Point Geometric Features

The pgeof function should be used as follows:

from pgeof import pgeof

pgeof(
    xyz,              # [n_points, 3] float32 2D array - 3D point coordinates
    nn,               # [num_neighborhoods] uint32 1D array - Flattened neighbor indices. Make sure those are all positive, '-1' indices will either crash or silently compute incorrect features
    nn_ptr,           # [n_points+1] uint32 1D array - Pointers wrt `nn`. More specifically, the neighbors of point `i` are `nn[nn_ptr[i]:nn_ptr[i + 1]]`
    k_min=1,          # (optional, default=1) int - Minimum number of neighbors to consider for features computation. If a point has less, it will be given 0 features
    k_step=-1,        # (optional, default=-1) int - Step size to take when searching for the optimal neighborhood size for each point, following: http://lareg.ensg.eu/labos/matis/pdf/articles_revues/2015/isprs_wjhm_15.pdf. If k_step < 1, pgeof will not search for the optimal neighborhood and features will be computed based on the all available neighbors for each point 
    k_min_search=10,  # (optional, default=10) int - Minimum neighborhood size at which to start when searching for the optimal neighborhood size for each point. It is advised to use a value of 10 or higher, for geometric features robustness
    verbose=False)    # (optional, default=False) bool - Whether computation progress should be printed out

# Print details on how pgeof works and expected input parameters
print(help(pgeof))

👇 You may check out the provided demo.py script to get started.

python demo.py

⚠️ Please note the neighbors are expected in CSR format. This allows expressing neighborhoods of varying sizes with dense arrays (eg the output of a radius search). Here are examples of how to easily convert typical k-NN or radius-NN neighborhoods to CSR format.

from sklearn.neighbors import NearestNeighbors
import numpy as np

# Generate a random synthetic point cloud and k-nearest neighbors
num_points = 10000
k = 20
xyz = np.random.rand(num_points, 3)
kneigh = NearestNeighbors(n_neighbors=k).fit(xyz).kneighbors(xyz)

# Converting k-nearest neighbors to CSR format
nn_ptr = np.arange(num_points + 1) * k
nn = kneigh[1].flatten()
from sklearn.neighbors import NearestNeighbors
import numpy as np

# Generate a random synthetic point cloud and radius neighbors
num_points = 10000
radius = 0.1
xyz = np.random.rand(num_points, 3)
rneigh = NearestNeighbors(radius=radius).fit(xyz).radius_neighbors(xyz)

# Converting radius neighbors to CSR format
nn_ptr = np.r_[0, np.array([x.shape[0] for x in rneigh[1]]).cumsum()]
nn = np.concatenate(rneigh[1])

💳 Credits

This implementation was largely inspired from Superpoint Graph. The main modifications here allow:

  • parallel computation on all points' local neighborhoods, with neighborhoods of varying sizes
  • more geometric features
  • optimal neighborhood search from this paper
  • some corrections on geometric features computation

License

Point Geometric Features is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pgeof-0.0.1.tar.gz (12.2 kB view details)

Uploaded Source

Built Distributions

pgeof-0.0.1-cp311-cp311-win_amd64.whl (64.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

pgeof-0.0.1-cp311-cp311-win32.whl (57.2 kB view details)

Uploaded CPython 3.11 Windows x86

pgeof-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pgeof-0.0.1-cp311-cp311-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pgeof-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pgeof-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pgeof-0.0.1-cp310-cp310-win_amd64.whl (64.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pgeof-0.0.1-cp310-cp310-win32.whl (57.2 kB view details)

Uploaded CPython 3.10 Windows x86

pgeof-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pgeof-0.0.1-cp310-cp310-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pgeof-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pgeof-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pgeof-0.0.1-cp39-cp39-win_amd64.whl (64.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pgeof-0.0.1-cp39-cp39-win32.whl (57.2 kB view details)

Uploaded CPython 3.9 Windows x86

pgeof-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pgeof-0.0.1-cp39-cp39-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pgeof-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pgeof-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pgeof-0.0.1-cp38-cp38-win_amd64.whl (64.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pgeof-0.0.1-cp38-cp38-win32.whl (57.2 kB view details)

Uploaded CPython 3.8 Windows x86

pgeof-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pgeof-0.0.1-cp38-cp38-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pgeof-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pgeof-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

File details

Details for the file pgeof-0.0.1.tar.gz.

File metadata

  • Download URL: pgeof-0.0.1.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e5647391817dca073cf4cc378eb4543b6d6cc5d0cac05c5bd42ac6265fe29905
MD5 89c14f117a298eadca571989ffc0bc53
BLAKE2b-256 4d4a94a91f3bc3e3645881275774974e84a489dd1de8de886e465de3b720442e

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 64.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 795de515a1cf6bf525c06595d0812ae2060e3d1cb4c0db57da1e62c705d87895
MD5 50a179a582ac90207c7a05e160dd4bb4
BLAKE2b-256 0463d8bf6db53534c200372cdc697ddca57c888cfafbc07590ae0fffce5da11e

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 57.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 745529e3f9d7acb7de30b351e5cb252278ab16c0e8a1fca01c59c9ce5c5a7921
MD5 51d9ba256d188898b4db8f72f9c75b4d
BLAKE2b-256 a8acd25f7410e1a08d134e312aa6ccb954712e6d41a43537104ed50a175b65cd

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98c12a97d43305d651c48673b7a523ec207c01a75e53db7896ba77a9dc860931
MD5 76a7d95899fbfd80cd97d1159455a8ed
BLAKE2b-256 37ada86667fc48d8586731656ef034c680b6c486505168c8c473837f6fe0259a

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bace6f19e21c9ad6ed49e125609c2376698c935f3072b36bccb4791fcbb3c530
MD5 d4e487c6d8e0d5f8ea380025fe47ff75
BLAKE2b-256 a14cca16aef19755340b1be9dde7adb8c12cba0b897bafdbc14b7cdb3a6fe360

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e95db9e86c61d9bc10fd126b03b8dc2f34e5456c56b086e99d91c5433991880
MD5 4a908472cbafbec2ae0386753d1fba25
BLAKE2b-256 14b3d8cb8629c05c9fae2605edc46449790cf2a80f224741347a621e8f9d67e2

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 146336343bda675eeb3b84b68750157de99e13daff8351db4ebff6968eff4a0d
MD5 5277c2abf9418a4286d2b3091aa50a74
BLAKE2b-256 5fc75a8957653b515c24bcfe2f3f984e0dad6965153d1b3427f29f00f236ae18

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 64.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4fdfaa2d64d6388e5f5aaaf8a49228375435d74e9b5fff71015946423407e7b1
MD5 2ffae31b0c9a08f53fdb3f966aa18d15
BLAKE2b-256 c2fbffb7b580615df0a9c717d0fb0001f5d4f4fa57039b7fd7f81b42ae2d37c4

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 57.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4496dd00f5d4acd055520335fb499ea89a3c08e136d97959d29429a373ee7bb4
MD5 b26186231823f898df8a68c09c335490
BLAKE2b-256 32180a8fbef9eef33f609ceeafa3776eb2cd0c744fc01d077e2bd59081e96e0e

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac7ac62ae0c46b6e7df4646b37906b661775b0668f1580c7d79de67bd2c295a0
MD5 1e126e8d3be990c68acfab616dedc755
BLAKE2b-256 699147c3701167942e40ff83300f849369de310b69a54b30f150a79d24ea5a84

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dfcd38c32b522a55d64fdd904f545a0076665292d2663c1971250e8d143cd055
MD5 a38dd05f7beb66e17fc8bc0eb6441c07
BLAKE2b-256 c6a0db8926e928610f8530c4c8d7162a778ddecc92b4585731ad8a00e396c992

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6f29ae58773c8ac8ed48d5dc044f186fd7c1677d98d87d37a1281b17157af32
MD5 af95ef9bfdd04ce1c6b1d9a93fe5cff2
BLAKE2b-256 b0c4401873bbbd4098d1f0c88410f36f3f4a2d460f7bc1fb746f17a01ee81487

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24ffc09e869e2a6ca86105dae636026c87afeecc63de64a1fc3ba1c2a9c22912
MD5 350a614f7a528cf736a5173725b613d4
BLAKE2b-256 7ad3e3381bc48cf83c6c55cbfdd2ce10a7197b6e324c6590f4fb0c87462c7cc0

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 64.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6c7410a89e0647e0dcece485a7b4ba4a6dc9ecf07c01eab5cc6106ce8bd8adc9
MD5 c24133193a9970b5cbca6d517de957d7
BLAKE2b-256 8093af955db85eb9e57429d2f8e1056fe9bdf4f37774e269dbc66158fd3baa4d

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 57.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ed61d476bd4bf62b900c10ca1c2bd14798f73fcf47020f92dde2d289df4d432e
MD5 3d614f735373d29f30b168aa7b232d5f
BLAKE2b-256 6dab2e1278e8d07131cad6405abfdfb477bb7609d744d576e0cd790313ef8b17

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90b5a7b99c5a6e755e728cb6bfe99e4fb349f6e0c057c957bd84e6a6f0c83bd1
MD5 43ad4f07c174f601acced720a9baa982
BLAKE2b-256 d765ebd1141c5e1b6d776604d8df1446a49b1a2a33c5a3e627a8ea500e2a2367

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 427af813b6214a474c649b979041e4a34a8b6523cd1ccccf0d8f33e531c2d5bf
MD5 c5abb260a3df394efafa09b6c4615dd1
BLAKE2b-256 cfde71875f33001f8fe91b75cb142851a558e2e418ccc153f67945f991b59f10

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bff9e173a682a440e21d2538d0190471e351302acfbeb1f667733d060bb5bca
MD5 4a6c63c3036797c8d597eeed0132fc18
BLAKE2b-256 00bc507a96caf0fc3e057570621ada2837544146c6ca4197fc38b59e8e404688

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 21c7d706908766eb71054126f9460c4f708c70b736399a32df8f36e7b0e31a7e
MD5 0a6bd53512eeadd57bbfe804df7f4450
BLAKE2b-256 a9c5027ab8d911d2c6072a8bf2dd540c5ac656ef34943e63041cf8776dafa36b

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 64.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 13b1eb8c84da13eb1d5186ec927e7ad680634e2e63e3f622bd523e6ce14d8d3c
MD5 bbc2850ad10f11d8641beea2f44268bb
BLAKE2b-256 bcad8bee7ddecc926b25cb75852f532f0e10bdacf623086ba11c8cd95fa9b5f5

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pgeof-0.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 57.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 81f34efdeaeaf001bd2c5c68a63999230ef730053f10634bf210ff9396720520
MD5 98cac58399fa710145b74ee5d85398cd
BLAKE2b-256 2aac9d3ca3a88a1f467f01dd4b5ee08b4a5828fc193d925c831c69f87603a4a7

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 27ce636785230628094d00ed3a7f3ce0452ff19be32b9ff61a84f894f91d1a73
MD5 2e1af2bd7daa0172a0c9b7f00bd1d5f6
BLAKE2b-256 ae8ee5a6664865526364bb74d02788a0b28608f4e115a4b06f0c6afe87b9cb3d

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 10ca4fe8e28af597c6fed92789b5d47530baabbbaccdfbbca303cc9420cb2fe5
MD5 7a9340c9a57a899367fcee59c52e2e06
BLAKE2b-256 3c706cbf878af80a6bde042905d78df32318c3ca1bff8481dcb5282b5222b4e1

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f42b012ae9f8dc890cb6c02106f0d11558ff517254ddd1b882c29cb4f693ce3
MD5 52c3980922e4e8735faa74da57462194
BLAKE2b-256 1005c208b1ed28767fd4fc98ae6108f64d1afce6d52cdec16ab4be58f84e8296

See more details on using hashes here.

Provenance

File details

Details for the file pgeof-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pgeof-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5f0e33ee95b6b3322ac58ee55ca4db3bb5a7d4a734299b6d983fc621f2b13ae
MD5 09cc8d5dbc5e981da747bd41dbb3ee88
BLAKE2b-256 60ac0b72162eae4f4ee76a687df2a867cb30c98a04497b8e2d0265bd523833eb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page