Skip to main content

PHATE

Project description

Latest PyPi version Latest CRAN version Travis CI Build Read the Docs bioRxiv Preprint Twitter GitHub stars

PHATE is a tool for visualizing high dimensional single-cell data with natural progressions or trajectories. PHATE uses a novel conceptual framework for learning and visualizing the manifold inherent to biological systems in which smooth transitions mark the progressions of cells from one state to another. To see how PHATE can be applied to single-cell RNA-seq datasets from hematopoietic stem cells, human embryonic stem cells, and bone marrow samples, check out our preprint on BioRxiv.

PHATE has been implemented in Python (2.7 and >=3.5), R and MATLAB.

Python installation and dependencies

Installation with pip

The Python version of PHATE can be installed using:

pip install --user phate

Installation from source

The Python version of PHATE can be installed from GitHub by running the following from a terminal:

git clone --recursive git://github.com/KrishnaswamyLab/PHATE.git
cd Python
python setup.py install --user

Quick Start

If you have loaded a data matrix data in Python (cells on rows, genes on columns) you can run PHATE as follows:

import phate
phate_op = phate.PHATE()
data_phate = phate_op.fit_transform(data)

PHATE accepts the following data types: numpy.array, scipy.spmatrix, pandas.DataFrame and anndata.AnnData.

Usage

PHATE has been implemented with an API that should be familiar to those with experience using scikit-learn. The core of the PHATE package is the PHATE class which is a subclass of sklearn.base.BaseEstimator. To get started, import phate and instantiate a phate.PHATE() object. Just like most sklearn estimators, PHATE() objects have both fit() and fit_transform() methods. For more information, check out our notebook below.

If you want to try running our test script on a DLA fractal tree, run the following in a Python interpreter:

import phate
tree_data, tree_clusters = phate.tree.gen_dla()
phate_operator = phate.PHATE(k=15, t=100)
tree_phate = phate_operator.fit_transform(tree_data)
phate.plot.scatter2d(phate_operator, c=tree_clusters) # or phate.plot.scatter2d(tree_phate, c=tree_clusters)
phate.plot.rotate_scatter3d(phate_operator, c=tree_clusters)

Jupyter Notebooks

A demo on PHATE usage and visualization for single cell RNA-seq data can be found in this Jupyter notebook. A second tutorial is available here which works with the artificial tree shown above in more detail. You can also access interactive versions of these tutorials on Google Colaboratory: single cell RNA seq, artificial tree.

Help

If you have any questions or require assistance using PHATE, please contact us at https://krishnaswamylab.org/get-help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phate-0.2.10.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

phate-0.2.10-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file phate-0.2.10.tar.gz.

File metadata

  • Download URL: phate-0.2.10.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for phate-0.2.10.tar.gz
Algorithm Hash digest
SHA256 64098b028977dd6c54afbae70865d266395bfc1dc05c51b9219b47ebb2a4350b
MD5 10e291461c622e89b77407602bc82093
BLAKE2b-256 66e6cb703ab1da0237997bc39f26b8d9498b267fe68bd7581b3e1b311efde98d

See more details on using hashes here.

File details

Details for the file phate-0.2.10-py3-none-any.whl.

File metadata

  • Download URL: phate-0.2.10-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for phate-0.2.10-py3-none-any.whl
Algorithm Hash digest
SHA256 7014c2dd036d2b56b4cf792f67e89944b954ab24f7259ae4cc8c48c773cbd600
MD5 2c0e0768dc3b346e521173539cf65300
BLAKE2b-256 8ac9505c0d57986162c33196842fe54605846821106685f5d9c05dcb3ad04a4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page