Skip to main content

A Python package for data manipulation and analysis utilities

Project description

📚 Python Script Documentation for main.py

Welcome to the documentation for the main.py file. This file contains a series of utility functions designed to manipulate, transform, and analyze pandas DataFrames. The main modules used in this script are pandas, numpy, itertools, and matplotlib.

Installation

pip install phenome-utils

OR

pip install git+https://git.phenome.health/trent.leslie/phenome-utils

📑 Index

  1. sum_and_sort_columns
  2. binary_threshold_matrix_by_col
  3. binary_threshold_matrix_by_row
  4. concatenate_csvs_in_directory
  5. aggregate_function
  6. aggregate_duplicates
  7. generate_subcategories
  8. generate_subcategories_with_proportions
  9. bin_continuous
  10. load_latest_yyyymmdd_file
  11. remove_rows_with_na_threshold
  12. impute_na_in_columns

1. sum_and_sort_columns

Description

Sum the numerical columns of a DataFrame, remove columns with a sum of zero, and sort the columns in descending order based on their sum. Optionally, plot a histogram of the non-zero column sums.

Parameters

Parameter Type Description
df DataFrame The input DataFrame.
plot_histogram bool Whether to plot a histogram of the non-zero column sums. Defaults to False.

Returns

Type Description
DataFrame A DataFrame with columns sorted in descending order based on their sum, zero-sum columns removed, and non-numeric columns preserved as the first columns.

Example Usage

# Example code demonstrating usage
sorted_df = sum_and_sort_columns(df, plot_histogram=True)

📊 Visualization

If plot_histogram is set to True, a histogram of the non-zero column sums will be displayed.


2. binary_threshold_matrix_by_col

Description

Convert a DataFrame's numerical columns to a binary matrix based on percentile thresholds and filter based on a second DataFrame.

Parameters

Parameter Type Description
df DataFrame The input DataFrame.
lower_threshold int The lower percentile threshold. Defaults to 1.
upper_threshold int The upper percentile threshold. Defaults to 99.
second_df DataFrame A second DataFrame with 'subcategory' and 'decimal_proportion' columns.
decimal_proportion_threshold float Threshold for filtering the second DataFrame. Defaults to 0.1.
filter_column str Column name in the original DataFrame to filter based on 'subcategory' from the second DataFrame.

Returns

Type Description
DataFrame A binary matrix where numerical column values outside the thresholds are 1 and within the thresholds are 0. Object columns are preserved.

Example Usage

# Example code demonstrating usage
binary_df = binary_threshold_matrix_by_col(df, lower_threshold=5, upper_threshold=95, second_df=second_df, filter_column='category')

3. binary_threshold_matrix_by_row

Description

Convert a DataFrame's numerical rows to a binary matrix based on percentile thresholds and filter based on a second DataFrame.

Parameters

Parameter Type Description
df DataFrame The input DataFrame.
lower_threshold int The lower percentile threshold. Defaults to 1.
upper_threshold int The upper percentile threshold. Defaults to 99.
second_df DataFrame A second DataFrame with 'subcategory' and 'decimal_proportion' columns.
decimal_proportion_threshold float Threshold for filtering the second DataFrame. Defaults to 0.1.
filter_column str Column name in the original DataFrame to filter based on 'subcategory' from the second DataFrame.

Returns

Type Description
DataFrame A binary matrix where numerical row values outside the thresholds are 1 and within the thresholds are 0. Object columns are preserved.

Example Usage

# Example code demonstrating usage
binary_df = binary_threshold_matrix_by_row(df, lower_threshold=5, upper_threshold=95, second_df=second_df, filter_column='category')

4. concatenate_csvs_in_directory

Description

Concatenate CSV files from a root directory and its subdirectories.

Parameters

Parameter Type Description
root_dir str The root directory to start the search.
filter_string str A string that must be in the filename to be included. Defaults to None.
file_extension str The file extension to search for. Defaults to "csv".
csv_filename str The filename to save the concatenated CSV. If not provided, returns the DataFrame.

Returns

Type Description
DataFrame or None A concatenated DataFrame of all the CSVs if csv_filename is not provided. Otherwise, saves the DataFrame and returns None.

Example Usage

# Example code demonstrating usage
concatenated_df = concatenate_csvs_in_directory('/path/to/directory', filter_string='data', csv_filename='output.csv')

5. aggregate_function

Description

General-purpose aggregation function.

Parameters

Parameter Type Description
x pd.Series Input series
numeric_method str Method to aggregate numeric data. Supports 'median', 'mean', and 'mode'. Default is 'median'.
substitute any Value to substitute when all values are NaN or mode is empty. Default is np.nan.

Returns

Type Description
any Aggregated value

Example Usage

# Example code demonstrating usage
aggregated_value = aggregate_function(pd.Series([1, 2, 3, np.nan]), numeric_method='mean')

6. aggregate_duplicates

Description

Aggregates duplicates in a dataframe based on specified grouping columns and a chosen aggregation method for numeric types.

Parameters

Parameter Type Description
df pd.DataFrame Input dataframe
group_columns list List of column names to group by
numeric_method str Method to aggregate numeric data. Supports 'median', 'mean', and 'mode'. Default is 'median'.
substitute any Value to substitute when all values are NaN or mode is empty. Default is np.nan.

Returns

Type Description
pd.DataFrame Dataframe with aggregated duplicates

Example Usage

# Example code demonstrating usage
aggregated_df = aggregate_duplicates(df, group_columns=['category'], numeric_method='mean')

7. generate_subcategories

Description

Generate subcategories by combining values from specified columns.

Parameters

Parameter Type Description
df pd.DataFrame The input dataframe.
columns list List of columns to generate subcategories from.
col_separator str Separator to use between column names for new columns. Defaults to '_'.
val_separator str Separator to use between values when combining. Defaults to ' '.
missing_val str Value to replace missing data in specified columns. Defaults to 'NA'.

Returns

Type Description
pd.DataFrame DataFrame with new subcategory columns.
list List of all column names (original + generated).

Example Usage

# Example code demonstrating usage
df, all_columns = generate_subcategories(df, columns=['col1', 'col2'])

8. generate_subcategories_with_proportions

Description

Generate subcategories by combining values from specified columns and calculate their proportions.

Parameters

Parameter Type Description
df pd.DataFrame The input dataframe.
columns list List of columns to generate subcategories from.
solo_columns list List of columns to be considered on their own.
col_separator str Separator to use between column names for new columns. Defaults to '_'.
val_separator str Separator to use between values when combining. Defaults to ' '.
missing_val str Value to replace missing data in specified columns. Defaults to 'NA'.
overall_category_name str Name for the overall category. Defaults to 'overall'.

Returns

Type Description
pd.DataFrame DataFrame with new subcategory columns.
list List of all column names (original + generated).
pd.DataFrame DataFrame with subcategory and its decimal proportion.

Example Usage

# Example code demonstrating usage
df, all_columns, proportions_df = generate_subcategories_with_proportions(df, columns=['col1', 'col2'], solo_columns=['col3'])

9. bin_continuous

Description

Bins continuous data in a specified column of a dataframe.

Parameters

Parameter Type Description
dataframe pd.DataFrame The input dataframe.
column_name str The name of the column containing continuous data to be binned.
bin_size int The size of each bin. Default is 10.
range_start int The starting value of the range for binning. Default is 0.

Returns

Type Description
pd.DataFrame The dataframe with an additional column for binned data.

Example Usage

# Example code demonstrating usage
binned_df = bin_continuous(df, column_name='age', bin_size=5)

10. load_latest_yyyymmdd_file

Description

Load the latest file from the specified directory based on its date.

Parameters

Parameter Type Description
directory str Path to the directory containing the files.
base_filename str Base name of the file.
file_extension str File extension including the dot (e.g., '.csv').
na_values list or dict Additional strings to recognize as NA/NaN.

Returns

Type Description
pd.DataFrame The loaded data.

Example Usage

# Example code demonstrating usage
df = load_latest_yyyymmdd_file("/path/to/directory", "data_", ".csv")
print(df.head())

11. remove_rows_with_na_threshold

Description

Removes rows from the dataframe that have a fraction of NA values greater than the specified threshold.

Parameters

Parameter Type Description
df pd.DataFrame The input dataframe.
stringified_ids list List of column names to consider for NA value calculation.
threshold float The fraction of NA values for a row to be removed. Default is 0.5.
save_starting_df bool Whether to save the initial dataframe to a CSV file. Default is False.

Returns

Type Description
pd.DataFrame The dataframe with rows removed based on the threshold.

Example Usage

# Example code demonstrating usage
cleaned_df = remove_rows_with_na_threshold(df, stringified_ids=['col1', 'col2'], threshold=0.3)

12. impute_na_in_columns

Description

Imputes NA values in columns with either the minimum or median value of the column.

Parameters

Parameter Type Description
df pd.DataFrame The input dataframe.
method str Method for imputation. Either 'min' or 'median'. Default is 'median'.

Returns

Type Description
pd.DataFrame The dataframe with NA values imputed.

Example Usage

# Example code demonstrating usage
imputed_df = impute_na_in_columns(df, method='median')

Each function is meticulously crafted to handle specific tasks related to data manipulation, transformation, and analysis. This documentation provides a comprehensive understanding of the capabilities and usage of each function within the main.py script. Happy coding! 🎉

# ph_utils

ph_utils is a Python package that provides utility functions for data manipulation and analysis, particularly focused on working with pandas DataFrames.

Features

  • Sum and sort DataFrame columns
  • Generate binary threshold matrices
  • Concatenate CSV files from directories
  • Aggregate duplicates in DataFrames
  • Generate subcategories from DataFrame columns
  • Bin continuous data
  • Load latest files based on date in filename
  • Remove rows with NA values above a threshold
  • Impute NA values in DataFrame columns

Installation

You can install ph_utils using pip:

pip install ph_utils

Usage

Here are some examples of how to use ph_utils:

import pandas as pd
from ph_utils import sum_and_sort_columns, binary_threshold_matrix_by_col, aggregate_duplicates

# Example 1: Sum and sort columns
df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [0, 0, 0],
    'C': [4, 5, 6],
    'D': ['x', 'y', 'z']
})
result = sum_and_sort_columns(df)
print(result)

# Example 2: Create a binary threshold matrix
binary_df = binary_threshold_matrix_by_col(df, lower_threshold=25, upper_threshold=75)
print(binary_df)

# Example 3: Aggregate duplicates
aggregated_df = aggregate_duplicates(df, group_columns=['D'], numeric_method='mean')
print(aggregated_df)

For more detailed information on each function, please refer to the function docstrings in the source code.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phenome_utils-0.3.0.tar.gz (14.5 kB view details)

Uploaded Source

Built Distribution

phenome_utils-0.3.0-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file phenome_utils-0.3.0.tar.gz.

File metadata

  • Download URL: phenome_utils-0.3.0.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for phenome_utils-0.3.0.tar.gz
Algorithm Hash digest
SHA256 42703ea76c158935b030291a88492e3a378d1f4e258b015c566aea917a128f61
MD5 8fbad7695bb496de7ebaccf9bfda3221
BLAKE2b-256 47eaa54d6c7dff387ecf25baed4930d0968508632dad62c4eef46051c3f5ee73

See more details on using hashes here.

Provenance

File details

Details for the file phenome_utils-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for phenome_utils-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 221474f0a06aa7647aa9867692139f27cf5adb7f027973223b60d4055284a95c
MD5 5352911d3da50e5fb5c9c2dca62f8894
BLAKE2b-256 cddeba2abe93474c8677cae07df485fa9a2b7b5357567ffba4a74f6542ced336

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page