Skip to main content

Python DB-API and SQLAlchemy dialect for Pinot.

Project description

Python DB-API and SQLAlchemy dialect for Pinot

This module allows accessing Pinot via its SQL API.

Current supported Pinot version: 0.9.3.

Usage

Using the DB API to query Pinot Broker directly:

from pinotdb import connect

# this assumes 8000 is the broker port
conn = connect(host='localhost', port=8000, path='/query/sql', scheme='http')
curs = conn.cursor()
curs.execute("""
    SELECT place,
           CAST(REGEXP_EXTRACT(place, '(.*),', 1) AS FLOAT) AS lat,
           CAST(REGEXP_EXTRACT(place, ',(.*)', 1) AS FLOAT) AS lon
      FROM places
     LIMIT 10
""")
for row in curs:
    print(row)

For HTTPS:

from pinotdb import connect

# this assumes that 443 is the broker secure https port
conn = connect(host='localhost', port=443, path='/query/sql', scheme='https')
curs = conn.cursor()
curs.execute("""
    SELECT place,
           CAST(REGEXP_EXTRACT(place, '(.*),', 1) AS FLOAT) AS lat,
           CAST(REGEXP_EXTRACT(place, ',(.*)', 1) AS FLOAT) AS lon
      FROM places
     LIMIT 10
""")
for row in curs:
    print(row)

Pinot also supports basic auth, e.g.

conn = connect(host="localhost", port=443, path="/query/sql", scheme="https", username="my-user", password="my-password", verify_ssl=True)

To pass in additional query parameters (such as useMultistageEngine=true) you may pass them in as part of the execute method. For example:

curs.execute("select * from airlineStats air limit 10", queryOptions="useMultistageEngine=true")

Using SQLAlchemy:

Since db engine requires more information beyond Pinot Broker, you need to provide pinot controller for table and schema information.

The db engine connection string is format as:

pinot+<pinot-broker-protocol>://<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=<pinot-controller-protocol>://<pinot-controller-host>:<pinot-controller-port>/

Default scheme is HTTP so you can ignore it. e.g. pinot+http://localhost:8099/query/sql?controller=http://localhost:9000/ and pinot://localhost:8099/query/sql?controller=localhost:9000/ work in same way.

For HTTPS, you have to specify the https scheme explicitly along with the port.

pinot+https://<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=https://<pinot-controller-host>:<pinot-controller-port>/

E.g. pinot+https://pinot-broker.pinot.live:443/query/sql?controller=https://pinot-controller.pinot.live/.

Please note that the broker port 443 has to be explicitly put there.

This can be used as Superset to Pinot connection:

If you have basic auth:

pinot+https://<my-user>:<my-password>@<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=https://<pinot-controller-host>:<pinot-controller-port>/[&&verify_ssl=<true/false>]

E.g. pinot+https://my-user:my-password@my-secure-pinot-broker:443/query/sql?controller=https://my-secure-pinot-controller/&&verify_ssl=true.

Below are some sample scripts to query pinot using sqlalchemy:

from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *

engine = create_engine('pinot://localhost:8099/query/sql?controller=http://localhost:9000/')  # uses HTTP by default :(
# or, using explicit HTTP:
# engine = create_engine('pinot+http://localhost:8099/query/sql?controller=http://localhost:9000/')
# or, using explicit HTTPS:
# engine = create_engine('pinot+https://localhost:8099/query/sql?controller=https://localhost:9000/')
# or, provide extra argument to connect with multi-stage engine enabled:
# engine = create_engine(
#     "pinot://localhost:8000/query/sql?controller=http://localhost:9000/",
#     connect_args={"useMultistageEngine": "true"}
# )

places = Table('places', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=places).scalar())

Examples with Pinot Quickstart

Start Pinot Batch Quickstart

docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type batch

Once pinot batch quickstart is up, you can run below sample code snippet to query Pinot:

python3 examples/pinot_quickstart_batch.py

Sample Output:

Sending SQL to Pinot: SELECT * FROM baseballStats LIMIT 5
[0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 'NL', 11, 11, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'SFN', 0, 2004]
[2, 45, 0, 0, 0, 0, 0, 0, 0, 0, 'NL', 45, 43, 'aardsda01', 'David Allan', 1, 0, 0, 0, 1, 0, 0, 'CHN', 0, 2006]
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 25, 2, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'CHA', 0, 2007]
[1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 47, 5, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 1, 'BOS', 0, 2008]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 73, 3, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'SEA', 0, 2009]

Sending SQL to Pinot: SELECT playerName, sum(runs) FROM baseballStats WHERE yearID>=2000 GROUP BY playerName LIMIT 5
['Scott Michael', 26.0]
['Justin Morgan', 0.0]
['Jason Andre', 0.0]
['Jeffrey Ellis', 0.0]
['Maximiliano R.', 16.0]

Sending SQL to Pinot: SELECT playerName,sum(runs) AS sum_runs FROM baseballStats WHERE yearID>=2000 GROUP BY playerName ORDER BY sum_runs DESC LIMIT 5
['Adrian', 1820.0]
['Jose Antonio', 1692.0]
['Rafael', 1565.0]
['Brian Michael', 1500.0]
['Alexander Emmanuel', 1426.0]

Start Pinot Hybrid Quickstart

docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type hybrid

Below is an example against Pinot Quickstart Hybrid:

python3 examples/pinot_quickstart_hybrid.py
Sending SQL to Pinot: SELECT * FROM airlineStats LIMIT 5
[171, 153, 19393, 0, 8, 8, 1433, '1400-1459', 0, 1425, 1240, 165, 'null', 0, 'WN', -2147483648, 1, 27, 17540, 0, 2, 2, 1242, '1200-1259', 0, 'MDW', 13232, 1323202, 30977, 'Chicago, IL', 'IL', 17, 'Illinois', 41, 861, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 402, 1, -2147483648, -2147483648, 1, -2147483648, 'BOS', 10721, 1072102, 30721, 'Boston, MA', 'MA', 25, 'Massachusetts', 13, 1, ['null'], -2147483648, 'N556WN', 6, 12, -2147483648, 'WN', -2147483648, 1254, 1427, 2014]
[183, 141, 20398, 1, 17, 17, 1302, '1200-1259', 1, 1245, 1005, 160, 'null', 0, 'MQ', 0, 1, 27, 17540, 0, -6, 0, 959, '1000-1059', -1, 'CMH', 11066, 1106603, 31066, 'Columbus, OH', 'OH', 39, 'Ohio', 44, 990, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 3574, 1, 0, -2147483648, 1, 17, 'MIA', 13303, 1330303, 32467, 'Miami, FL', 'FL', 12, 'Florida', 33, 1, ['null'], 0, 'N605MQ', 13, 29, -2147483648, 'MQ', 0, 1028, 1249, 2014]
[-2147483648, -2147483648, 20304, -2147483648, -2147483648, -2147483648, -2147483648, '2100-2159', -2147483648, 2131, 2005, 146, 'null', 0, 'OO', -2147483648, 1, 27, 17541, 1, 52, 52, 2057, '2000-2059', 3, 'COS', 11109, 1110902, 30189, 'Colorado Springs, CO', 'CO', 8, 'Colorado', 82, 809, 4, -2147483648, [11292], 1, [1129202], ['DEN'], -2147483648, 73, [9], 0, ['null'], [9], [-2147483648], [2304], 1, -2147483648, '2014-01-27', 5554, 1, -2147483648, -2147483648, 1, -2147483648, 'IAH', 12266, 1226603, 31453, 'Houston, TX', 'TX', 48, 'Texas', 74, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK', 'BRO', 'JFK', 'SAT', 'ORD', 'ACY', 'DFW', 'BWI'], -2147483648, 'N795SK', -2147483648, 19, -2147483648, 'OO', -2147483648, 2116, -2147483648, 2014]
[153, 125, 20436, 1, 41, 41, 1442, '1400-1459', 2, 1401, 1035, 146, 'null', 0, 'F9', 2, 1, 27, 17541, 1, 34, 34, 1109, '1000-1059', 2, 'DEN', 11292, 1129202, 30325, 'Denver, CO', 'CO', 8, 'Colorado', 82, 967, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 658, 1, 8, -2147483648, 1, 31, 'SFO', 14771, 1477101, 32457, 'San Francisco, CA', 'CA', 6, 'California', 91, 1, ['null'], 0, 'N923FR', 11, 17, -2147483648, 'F9', 0, 1126, 1431, 2014]
[-2147483648, -2147483648, 20304, -2147483648, -2147483648, -2147483648, -2147483648, '1400-1459', -2147483648, 1432, 1314, 78, 'B', 1, 'OO', -2147483648, 1, 27, 17541, -2147483648, -2147483648, -2147483648, -2147483648, '1300-1359', -2147483648, 'EAU', 11471, 1147103, 31471, 'Eau Claire, WI', 'WI', 55, 'Wisconsin', 45, 268, 2, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 5455, 1, -2147483648, -2147483648, 1, -2147483648, 'ORD', 13930, 1393003, 30977, 'Chicago, IL', 'IL', 17, 'Illinois', 41, 1, ['null'], -2147483648, 'N903SW', -2147483648, -2147483648, -2147483648, 'OO', -2147483648, -2147483648, -2147483648, 2014]

Sending SQL to Pinot: SELECT count(*) FROM airlineStats LIMIT 5
[17772]

Sending SQL to Pinot: SELECT AirlineID, sum(Cancelled) FROM airlineStats WHERE Year > 2010 GROUP BY AirlineID LIMIT 5
[20409, 40.0]
[19930, 16.0]
[19805, 60.0]
[19790, 115.0]
[20366, 172.0]

Sending SQL to Pinot: select OriginCityName, max(Flights) from airlineStats group by OriginCityName ORDER BY max(Flights) DESC LIMIT 5
['Casper, WY', 1.0]
['Deadhorse, AK', 1.0]
['Austin, TX', 1.0]
['Chicago, IL', 1.0]
['Monterey, CA', 1.0]

Sending SQL to Pinot: SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM airlineStats WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5
['Chicago, IL', 178.0]
['Atlanta, GA', 111.0]
['New York, NY', 65.0]
['Houston, TX', 62.0]
['Denver, CO', 49.0]

Sending Count(*) SQL to Pinot
17773

Sending SQL: "SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM "airlineStats" WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5" to Pinot
[('Chicago, IL', 178.0), ('Atlanta, GA', 111.0), ('New York, NY', 65.0), ('Houston, TX', 62.0), ('Denver, CO', 49.0)]

Examples with existing pinot.live demo cluster

Just run below script to query pinot.live demo cluster in two ways using pinotdb connect and sqlalchemy.

python3 examples/pinot_live.py

And response:

Sending SQL to Pinot: SELECT * FROM airlineStats LIMIT 5
[384, 359, 19805, 0, 13, 13, 1238, '1200-1259', 0, 1225, 900, 385, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 14, 14, 914, '0900-0959', 0, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 2475, 10, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 1, 1, -2147483648, -2147483648, 1, -2147483648, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK', 'BRO', 'JFK', 'SAT', 'ORD', 'ACY', 'DFW', 'BWI', 'TPA', 'BFL', 'BOS', 'SNA', 'ISN'], -2147483648, 'N338AA', 5, 20, -2147483648, 'AA', -2147483648, 934, 1233, 2014]
[269, 251, 19805, 0, -36, 0, 1549, '1600-1659', -2, 1625, 825, 300, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, -5, 0, 820, '0800-0859', -1, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 2248, 9, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 44, 1, -2147483648, -2147483648, 1, -2147483648, 'LAS', 12889, 1288903, 32211, 'Las Vegas, NV', 'NV', 32, 'Nevada', 85, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK'], -2147483648, 'N3DVAA', 6, 12, -2147483648, 'AA', -2147483648, 832, 1543, 2014]
[307, 288, 19805, 0, -26, 0, 2039, '2100-2159', -2, 2105, 1340, 325, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, -8, 0, 1332, '1300-1359', -1, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 2556, 11, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 162, 1, -2147483648, -2147483648, 1, -2147483648, 'HNL', 12173, 1217301, 32134, 'Honolulu, HI', 'HI', 15, 'Hawaii', 2, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN'], -2147483648, 'N5FCAA', 8, 11, -2147483648, 'AA', -2147483648, 1343, 2031, 2014]
[141, 126, 19805, 0, -19, 0, 1456, '1500-1559', -2, 1515, 1135, 160, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 0, 0, 1135, '1100-1159', 0, 'DCA', 11278, 1127802, 30852, 'Washington, DC', 'VA', 51, 'Virginia', 38, 1192, 5, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 130, 1, -2147483648, -2147483648, 1, -2147483648, 'DFW', 11298, 1129803, 30194, 'Dallas/Fort Worth, TX', 'TX', 48, 'Texas', 74, 1, ['null'], -2147483648, 'N3EGAA', 4, 11, -2147483648, 'AA', -2147483648, 1146, 1452, 2014]
[300, 277, 19805, 0, -8, 0, 32, '0001-0559', -1, 40, 1625, 315, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 7, 7, 1632, '1600-1659', 0, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 2475, 10, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 180, 1, -2147483648, -2147483648, 1, -2147483648, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 1, ['null'], -2147483648, 'N335AA', 10, 13, -2147483648, 'AA', -2147483648, 1645, 22, 2014]

Sending Count(*) SQL to Pinot
9746

Sending SQL: "SELECT playerName, sum(runs) AS sum_runs FROM "baseballStats" WHERE yearID>=2000 GROUP BY playerName ORDER BY sum_runs DESC LIMIT 5" to Pinot
[(19790, 581.0), (19977, 522.0), (19690, 520.0), (19805, 481.0), (20409, 410.0), (21171, 385.0), (19930, 378.0), (20355, 377.0), (19393, 326.0), (20437, 268.0)]

Development

In order to develop this library, you need to have installed Poetry and tox.

After you make sure you have them installed, test the library:

  1. Run the Pinot QuickStart (for integration tests): $ make run-pinot
  2. On a separate shell, run: $ make init
  3. Then: $ make test

Release

Prepare release credential

First, configure your credentials for the release. You can simply attach your PyPI API token to the Poetry tool:

$ poetry config pypi-token.pypi <your_api_token_generated_from_pypi.org>

You should only need to do this once to set up your poetry config for the release. Alternatively, you can also use username and password:

$ poetry publish --username=<your_username> --password='<your_password>'

Build and release a new Pinot DB-API to PyPI

Bump the project to whichever next version is more suitable according to SemVer. For example, to bump the patch version automatically, simply ran the following command:

$ poetry version patch

Run to build the distribution:

$ poetry build

Then publish it to pinotdb in PyPI:

$ poetry publish

You can also go to Github Action: Pinotdb Pypi Publisher to click and run the workflow to publish to PYPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pinotdb-5.1.4.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

pinotdb-5.1.4-py3-none-any.whl (18.7 kB view details)

Uploaded Python 3

File details

Details for the file pinotdb-5.1.4.tar.gz.

File metadata

  • Download URL: pinotdb-5.1.4.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.13 Linux/6.5.0-1016-azure

File hashes

Hashes for pinotdb-5.1.4.tar.gz
Algorithm Hash digest
SHA256 4381469588a4656ac549eb9391fafe8fc3e325b11ec0b894a1b48fe7d4dd0b2b
MD5 a1bd7ac58e60aed04f306e9160a66659
BLAKE2b-256 61aed48875d04208406be5a97c8aa97c52dfa0f8a3c24c027f57129c704887d4

See more details on using hashes here.

File details

Details for the file pinotdb-5.1.4-py3-none-any.whl.

File metadata

  • Download URL: pinotdb-5.1.4-py3-none-any.whl
  • Upload date:
  • Size: 18.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.13 Linux/6.5.0-1016-azure

File hashes

Hashes for pinotdb-5.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 bc67c95a82aac09f4e22069edab6a6aa1c03a8f7c152af280a2a851e12f8f8df
MD5 716465a2ab59364f27e3b7fc3bb34d43
BLAKE2b-256 5ade0541e568c6b6e7d4de18582694820a078ce062ad8f7ea5c9a9f0654a8f06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page