Skip to main content

Extensible JSON-RPC library

Project description

Downloads/month Build status License Supported Python versions Code coverage ReadTheDocs status

pjrpc is an extensible JSON-RPC client/server library with an intuitive interface that can be easily extended and integrated in your project without writing a lot of boilerplate code.

Features:

  • framework agnostic

  • intuitive api

  • extendability

  • synchronous and asynchronous client backed

  • synchronous and asynchronous server support

  • popular frameworks integration

  • builtin parameter validation

  • pytest integration

  • openapi schema generation support

  • web ui support (SwaggerUI, RapiDoc, ReDoc)

Installation

You can install pjrpc with pip:

$ pip install pjrpc

Extra requirements

Documentation

Documentation is available at Read the Docs.

Quickstart

Client requests

pjrpc client interface is very simple and intuitive. Methods may be called by name, using proxy object or by sending handmade pjrpc.common.Request class object. Notification requests can be made using pjrpc.client.AbstractClient.notify method or by sending a pjrpc.common.Request object without id.

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client


client = pjrpc_client.Client('http://localhost/api/v1')

response: pjrpc.Response = client.send(pjrpc.Request('sum', params=[1, 2], id=1))
print(f"1 + 2 = {response.result}")

result = client('sum', a=1, b=2)
print(f"1 + 2 = {result}")

result = client.proxy.sum(1, 2)
print(f"1 + 2 = {result}")

client.notify('tick')

Asynchronous client api looks pretty much the same:

import pjrpc
from pjrpc.client.backend import aiohttp as pjrpc_client


client = pjrpc_client.Client('http://localhost/api/v1')

response = await client.send(pjrpc.Request('sum', params=[1, 2], id=1))
print(f"1 + 2 = {response.result}")

result = await client('sum', a=1, b=2)
print(f"1 + 2 = {result}")

result = await client.proxy.sum(1, 2)
print(f"1 + 2 = {result}")

await client.notify('tick')

Batch requests

Batch requests also supported. You can build pjrpc.common.BatchRequest request by your hand and then send it to the server. The result is a pjrpc.common.BatchResponse instance you can iterate over to get all the results or get each one by index:

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client


client = pjrpc_client.Client('http://localhost/api/v1')

batch_response = await client.batch.send(pjrpc.BatchRequest(
    pjrpc.Request('sum', [2, 2], id=1),
    pjrpc.Request('sub', [2, 2], id=2),
    pjrpc.Request('div', [2, 2], id=3),
    pjrpc.Request('mult', [2, 2], id=4),
))
print(f"2 + 2 = {batch_response[0].result}")
print(f"2 - 2 = {batch_response[1].result}")
print(f"2 / 2 = {batch_response[2].result}")
print(f"2 * 2 = {batch_response[3].result}")

There are also several alternative approaches which are a syntactic sugar for the first one (note that the result is not a pjrpc.common.BatchResponse object anymore but a tuple of “plain” method invocation results):

  • using chain call notation:

result = await client.batch('sum', 2, 2)('sub', 2, 2)('div', 2, 2)('mult', 2, 2).call()
print(f"2 + 2 = {result[0]}")
print(f"2 - 2 = {result[1]}")
print(f"2 / 2 = {result[2]}")
print(f"2 * 2 = {result[3]}")
  • using subscription operator:

result = await client.batch[
    ('sum', 2, 2),
    ('sub', 2, 2),
    ('div', 2, 2),
    ('mult', 2, 2),
]
print(f"2 + 2 = {result[0]}")
print(f"2 - 2 = {result[1]}")
print(f"2 / 2 = {result[2]}")
print(f"2 * 2 = {result[3]}")
  • using proxy chain call:

result = await client.batch.proxy.sum(2, 2).sub(2, 2).div(2, 2).mult(2, 2).call()
print(f"2 + 2 = {result[0]}")
print(f"2 - 2 = {result[1]}")
print(f"2 / 2 = {result[2]}")
print(f"2 * 2 = {result[3]}")

Which one to use is up to you but be aware that if any of the requests returns an error the result of the other ones will be lost. In such case the first approach can be used to iterate over all the responses and get the results of the succeeded ones like this:

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client


client = pjrpc_client.Client('http://localhost/api/v1')

batch_response = client.batch.send(pjrpc.BatchRequest(
    pjrpc.Request('sum', [2, 2], id=1),
    pjrpc.Request('sub', [2, 2], id=2),
    pjrpc.Request('div', [2, 2], id=3),
    pjrpc.Request('mult', [2, 2], id=4),
))

for response in batch_response:
    if response.is_success:
        print(response.result)
    else:
        print(response.error)

Batch notifications:

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client


client = pjrpc_client.Client('http://localhost/api/v1')

client.batch.notify('tick').notify('tack').notify('tick').notify('tack').call()

Server

pjrpc supports popular backend frameworks like aiohttp, flask and message brokers like kombu and aio_pika.

Running of aiohttp based JSON-RPC server is a very simple process. Just define methods, add them to the registry and run the server:

import uuid

from aiohttp import web

import pjrpc.server
from pjrpc.server.integration import aiohttp

methods = pjrpc.server.MethodRegistry()


@methods.add(context='request')
async def add_user(request: web.Request, user: dict):
    user_id = uuid.uuid4().hex
    request.app['users'][user_id] = user

    return {'id': user_id, **user}


jsonrpc_app = aiohttp.Application('/api/v1')
jsonrpc_app.dispatcher.add_methods(methods)
jsonrpc_app.app['users'] = {}

if __name__ == "__main__":
    web.run_app(jsonrpc_app.app, host='localhost', port=8080)

Parameter validation

Very often besides dumb method parameters validation it is necessary to implement more “deep” validation and provide comprehensive errors description to clients. Fortunately pjrpc has builtin parameter validation based on pydantic library which uses python type annotation for validation. Look at the following example: all you need to annotate method parameters (or describe more complex types beforehand if necessary). pjrpc will be validating method parameters and returning informative errors to clients.

import enum
import uuid
from typing import List

import pydantic
from aiohttp import web

import pjrpc.server
from pjrpc.server.validators import pydantic as validators
from pjrpc.server.integration import aiohttp

methods = pjrpc.server.MethodRegistry()
validator = validators.PydanticValidator()


class ContactType(enum.Enum):
    PHONE = 'phone'
    EMAIL = 'email'


class Contact(pydantic.BaseModel):
    type: ContactType
    value: str


class User(pydantic.BaseModel):
    name: str
    surname: str
    age: int
    contacts: List[Contact]


@methods.add(context='request')
@validator.validate
async def add_user(request: web.Request, user: User):
    user_id = uuid.uuid4()
    request.app['users'][user_id] = user

    return {'id': user_id, **user.dict()}


class JSONEncoder(pjrpc.server.JSONEncoder):

    def default(self, o):
        if isinstance(o, uuid.UUID):
            return o.hex
        if isinstance(o, enum.Enum):
            return o.value

        return super().default(o)


jsonrpc_app = aiohttp.Application('/api/v1', json_encoder=JSONEncoder)
jsonrpc_app.dispatcher.add_methods(methods)
jsonrpc_app.app['users'] = {}

if __name__ == "__main__":
    web.run_app(jsonrpc_app.app, host='localhost', port=8080)

Error handling

pjrpc implements all the errors listed in protocol specification which can be found in pjrpc.common.exceptions module so that error handling is very simple and “pythonic-way”:

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client

client = pjrpc_client.Client('http://localhost/api/v1')

try:
    result = client.proxy.sum(1, 2)
except pjrpc.MethodNotFound as e:
    print(e)

Default error list can be easily extended. All you need to create an error class inherited from pjrpc.exc.JsonRpcError and define an error code and a description message. pjrpc will be automatically deserializing custom errors for you:

import pjrpc
from pjrpc.client.backend import requests as pjrpc_client

class UserNotFound(pjrpc.exc.JsonRpcError):
    code = 1
    message = 'user not found'


client = pjrpc_client.Client('http://localhost/api/v1')

try:
    result = client.proxy.get_user(user_id=1)
except UserNotFound as e:
    print(e)

On the server side everything is also pretty straightforward:

import uuid

import flask

import pjrpc
from pjrpc.server import MethodRegistry
from pjrpc.server.integration import flask as integration

app = flask.Flask(__name__)

methods = pjrpc.server.MethodRegistry()


class UserNotFound(pjrpc.exc.JsonRpcError):
    code = 1
    message = 'user not found'


@methods.add
def add_user(user: dict):
    user_id = uuid.uuid4().hex
    flask.current_app.users[user_id] = user

    return {'id': user_id, **user}

@methods.add
 def get_user(self, user_id: str):
    user = flask.current_app.users.get(user_id)
    if not user:
        raise UserNotFound(data=user_id)

    return user


json_rpc = integration.JsonRPC('/api/v1')
json_rpc.dispatcher.add_methods(methods)

app.users = {}

json_rpc.init_app(app)

if __name__ == "__main__":
    app.run(port=80)

Open API specification

pjrpc has built-in OpenAPI and OpenRPC specification generation support and integrated web UI as an extra dependency. Three UI types are supported:

Web UI extra dependency can be installed using the following code:

$ pip install pjrpc[openapi-ui-bundles]

The following example illustrates how to configure OpenAPI specification generation and Swagger UI web tool with basic auth:

import uuid
from typing import Any, Optional

import flask
import flask_httpauth
import pydantic
import flask_cors
from werkzeug import security

import pjrpc.server.specs.extractors.pydantic
from pjrpc.server.integration import flask as integration
from pjrpc.server.validators import pydantic as validators
from pjrpc.server.specs import extractors, openapi as specs


app = flask.Flask('myapp')
flask_cors.CORS(app, resources={"/myapp/api/v1/*": {"origins": "*"}})

methods = pjrpc.server.MethodRegistry()
validator = validators.PydanticValidator()

auth = flask_httpauth.HTTPBasicAuth()
credentials = {"admin": security.generate_password_hash("admin")}


@auth.verify_password
def verify_password(username: str, password: str) -> Optional[str]:
    if username in credentials and security.check_password_hash(credentials.get(username), password):
        return username


class AuthenticatedJsonRPC(integration.JsonRPC):
    @auth.login_required
    def _rpc_handle(self, dispatcher: pjrpc.server.Dispatcher) -> flask.Response:
        return super()._rpc_handle(dispatcher)


class JSONEncoder(pjrpc.JSONEncoder):
    def default(self, o: Any) -> Any:
        if isinstance(o, pydantic.BaseModel):
            return o.dict()
        if isinstance(o, uuid.UUID):
            return str(o)

        return super().default(o)


class UserIn(pydantic.BaseModel):
    """
    User registration data.
    """

    name: str
    surname: str
    age: int


class UserOut(UserIn):
    """
    Registered user data.
    """

    id: uuid.UUID


class AlreadyExistsError(pjrpc.exc.JsonRpcError):
    """
    User already registered error.
    """

    code = 2001
    message = "user already exists"


class NotFoundError(pjrpc.exc.JsonRpcError):
    """
    User not found error.
    """

    code = 2002
    message = "user not found"


@specs.annotate(
    tags=['users'],
    errors=[AlreadyExistsError],
    examples=[
        specs.MethodExample(
            summary="Simple example",
            params=dict(
                user={
                    'name': 'John',
                    'surname': 'Doe',
                    'age': 25,
                },
            ),
            result={
                'id': 'c47726c6-a232-45f1-944f-60b98966ff1b',
                'name': 'John',
                'surname': 'Doe',
                'age': 25,
            },
        ),
    ],
)
@methods.add
@validator.validate
def add_user(user: UserIn) -> UserOut:
    """
    Creates a user.

    :param object user: user data
    :return object: registered user
    :raise AlreadyExistsError: user already exists
    """

    for existing_user in flask.current_app.users_db.values():
        if user.name == existing_user.name:
            raise AlreadyExistsError()

    user_id = uuid.uuid4().hex
    flask.current_app.users_db[user_id] = user

    return UserOut(id=user_id, **user.dict())


@specs.annotate(
    tags=['users'],
    errors=[NotFoundError],
    examples=[
        specs.MethodExample(
            summary='Simple example',
            params=dict(
                user_id='c47726c6-a232-45f1-944f-60b98966ff1b',
            ),
            result={
                'id': 'c47726c6-a232-45f1-944f-60b98966ff1b',
                'name': 'John',
                'surname': 'Doe',
                'age': 25,
            },
        ),
    ],
)
@methods.add
@validator.validate
def get_user(user_id: uuid.UUID) -> UserOut:
    """
    Returns a user.

    :param object user_id: user id
    :return object: registered user
    :raise NotFoundError: user not found
    """

    user = flask.current_app.users_db.get(user_id.hex)
    if not user:
        raise NotFoundError()

    return UserOut(id=user_id, **user.dict())


@specs.annotate(
    tags=['users'],
    errors=[NotFoundError],
    examples=[
        specs.MethodExample(
            summary='Simple example',
            params=dict(
                user_id='c47726c6-a232-45f1-944f-60b98966ff1b',
            ),
            result=None,
        ),
    ],
)
@methods.add
@validator.validate
def delete_user(user_id: uuid.UUID) -> None:
    """
    Deletes a user.

    :param object user_id: user id
    :raise NotFoundError: user not found
    """

    user = flask.current_app.users_db.pop(user_id.hex, None)
    if not user:
        raise NotFoundError()


json_rpc = AuthenticatedJsonRPC(
    '/api/v1',
    json_encoder=JSONEncoder,
    spec=specs.OpenAPI(
        info=specs.Info(version="1.0.0", title="User storage"),
        servers=[
            specs.Server(
                url='http://127.0.0.1:8080',
            ),
        ],
        security_schemes=dict(
            basicAuth=specs.SecurityScheme(
                type=specs.SecuritySchemeType.HTTP,
                scheme='basic',
            ),
        ),
        security=[
            dict(basicAuth=[]),
        ],
        schema_extractor=extractors.pydantic.PydanticSchemaExtractor(),
        ui=specs.SwaggerUI(),
        # ui=specs.RapiDoc(),
        # ui=specs.ReDoc(),
    ),
)
json_rpc.dispatcher.add_methods(methods)

app.users_db = {}

myapp = flask.Blueprint('myapp', __name__, url_prefix='/myapp')
json_rpc.init_app(myapp)

app.register_blueprint(myapp)

if __name__ == "__main__":
    app.run(port=8080)

Specification is available on http://localhost:8080/myapp/api/v1/openapi.json

Web UI is running on http://localhost:8080/myapp/api/v1/ui/

Swagger UI:

Open API full example

RapiDoc:

Open API cli example

Redoc:

Open API method example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pjrpc-1.9.0.tar.gz (52.8 kB view details)

Uploaded Source

Built Distribution

pjrpc-1.9.0-py3-none-any.whl (69.3 kB view details)

Uploaded Python 3

File details

Details for the file pjrpc-1.9.0.tar.gz.

File metadata

  • Download URL: pjrpc-1.9.0.tar.gz
  • Upload date:
  • Size: 52.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.3 Linux/6.5.0-1018-azure

File hashes

Hashes for pjrpc-1.9.0.tar.gz
Algorithm Hash digest
SHA256 7dd32c0d56ef70be13200938dec86bc02ee1fead0edfe81ca6808e8575cfc356
MD5 afb9e3e745d6618e1d38ad71d320f9d3
BLAKE2b-256 ec36eefa80150440aa730315bb5f23072383199085e45c7b6f98d8947e3059c7

See more details on using hashes here.

File details

Details for the file pjrpc-1.9.0-py3-none-any.whl.

File metadata

  • Download URL: pjrpc-1.9.0-py3-none-any.whl
  • Upload date:
  • Size: 69.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.3 Linux/6.5.0-1018-azure

File hashes

Hashes for pjrpc-1.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b843bd32a2686fbb7f152bdc99433bf7efa58d23c68021b0b03ee5781eef2f2b
MD5 aec382fab1bd5944499ad9ccc3319507
BLAKE2b-256 8f8f3bbb6c05500bc3c25b29ee1a09b9d8831a76b3eedb1e274f765340c72ac9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page