Skip to main content

Python Plant Extract Document processor

Project description

Plant Extract Document processor
================================
A package for interacting with and creating [SunSpec](http://sunspec.org)
Plant Extract Documents and the standard blocks contained therein.

Installation
------------
Using pip::

pip install plantextract

Usage
-------
Typical `parse` usage looks like this::

#!/usr/bin/env python

from pedparser import ModelIDValues, PointIDValues
import plantextract.pedparser
...

this_dir, this_filename = os.path.split(__file__)
ped_file = os.path.join(this_dir, 'examples', 'ped-kitchen-sink.xml')
parser = pedparser.PlantExtractParser()
parser.parse(ped_file=ped_file)
parser.ped.plant # the Plant block
parser.ped.plant.name # the Plant's name attribute
parser.ped.plant.location.city # the Plant's location city attribute

# get ENERGY Points that are from an INVERTER_SINGLE_PHASE Model
points = parser.match_model_points(
model_id=ModelIDValues.INVERTER_SINGLE_PHASE,
point_ids=[PointIDValues.ENERGY]
)
print('Retrieved point:', points[0].id, points[0].value())
print('Point scale factor:', points[0].sf)
print('Point value:', points[0].value()) # another way to get Point value

# get ENERGY Points that are from an INVERTER_SINGLE_PHASE Model, but only
# if the Device containing the Model has a logger ID of '11:22:33:44:55:66'
points = parser.match_model_points(
model_id=ModelIDValues.INVERTER_SINGLE_PHASE,
logger_id='11:22:33:44:55:66',
point_ids=[PointIDValues.ENERGY, PointIDValues.POWER]
)
print('Retrieved point:', points[0].id, points[0].value())
# ...etc...

# ...or one can directly interact with the sunSpecData block
print parser.ped.sunSpecData.d # the DeviceRecords list in the sunSpecData
print parser.ped.sunSpecData.d[0].m # the Models list in the Zero'th Device
print parser.ped.sunSpecData.d[0].m[0].p[0].id # the ID of the Zero'th Point
# ...etc...


Typical `create` usage looks like this:

#!/usr/bin/env python

from plantextract.ped import PlantExtract, Plant, Location
from plantextract.ped import NamePlate, Array, Equipment

ped = PlantExtract(
Plant(
uuid4(),
activation_date="2013-03-02",
location=Location(latitude=1.1, longitude=2.2,
city="Redwood City",
state_province="CA"),
name_plate=NamePlate(props=[
Property('installedDCCapacity', 'float', '6.5'),
Property('installedACCapacity', 'float', '6.4')
]),
design_elements=DesignElements(props=[
Property('plantType', 'string', 'commercial')
]),
array=Array(props=[
Property('description','string','Carport')
], array_id=1),
equipment=Equipment(props=[
Property('Mn', 'string', 'MeterManuf'),
Property('Md', 'string', 'MeterModel'),
Property('uncertainty', 'float', '0.5')
], equipment_type='meter')
)
)

Requires [PyXB](http://pyxb.sourceforge.net) 1.2.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plantextract-0.3.0.tar.gz (68.4 kB view details)

Uploaded Source

File details

Details for the file plantextract-0.3.0.tar.gz.

File metadata

File hashes

Hashes for plantextract-0.3.0.tar.gz
Algorithm Hash digest
SHA256 6ce724af93f27955779cc58e036cb93ad95f61e387157ebbbef6ff6639a8ed67
MD5 2d514c57417e9ab5b081b170dfdf010b
BLAKE2b-256 98c9b26490711873c0f4e7e66ec14c38f8b76f8e5ba175fb4f10067d2c2f156d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page