A Python module for (local) Poisson-Nijenhuis calculus on Poisson manifolds
Project description
PoissonGeometry
A Python module for (local) Poisson-Nijenhuis calculus on Poisson manifolds, with the following functions:
poisson_bracket | hamiltonian_vf | lichnerowicz_poisson_operator |
---|---|---|
modular_vf | curl_operator | flaschka_ratiu_bivector |
sharp_morphism | bivector_to_matrix | jacobiator |
one_forms_bracket | gauge_transformation | is_unimodular_homogeneous * |
linear_normal_form_R3 | isomorphic_lie_poisson_R3 | is_in_kernel * |
is_poisson_tensor * | is_casimir * | is_poisson_vf * |
is_poisson_pair * |
Remark. We have indicated with an asterisk (*) the six methods whose implementations require testing whether a symbolic expression is zero. These are naturally limited by theoretical computational constraints.
This repository accompanies our paper 'On Computational Poisson Geometry I: Symbolic Foundations'.
Motivation
Some of the functions in this module have been used to obtain the results in these articles:
-
L. C. Garcia-Naranjo, P. Suárez-Serrato & R. Vera,
Poisson Structures on Smooth 4-Manifolds,
Lett. Math. Phys. 105, 1533-1550 (2015) -
P. Suárez-Serrato & J. Torres-Orozco,
Poisson Structures on Wrinkled Fibrations,
Bol. Soc.Mat. Mex. 22, 263-280 (2016) -
P. Suárez-Serrato, J. Torres Orozco, & R. Vera,
Poisson and Near-Symplectic Structures on Generalized Wrinkled Fibrations in Dimension 6,
Ann. Glob. Anal. Geom. (2019) 55, 777-804 (2019) -
M. Evangelista-Alvarado, P. Suárez-Serrato, J. Torres-Orozco & R. Vera,
On Bott-Morse Foliations and their Poisson Structures in Dimension 3,
Journal of Singularities 19, 19-33 (2019)
🚀
-
Run our tutorial on Colab English / Castellano
-
Run on your local machine
- Clone this repository on your local machine.
- Open a terminal with the path where you clone this repository.
- Create a virtual environment,(see this link)
- Install the requirements:
(venv_name) C:Users/dekstop/poisson$ pip install poissongeometry
- Open python terminal to start:
(venv_name) C:Users/dekstop/poisson$ python
- Import PoissonGeometry module:
>>> from poisson.poisson import PoissonGeometry
Bugs & Contributions
Our issue tracker is at https://github.com/appliedgeometry/poissongeometry/issues. Please report any bugs that you find. Or, even better, if you are interested in our project you can fork the repository on GitHub and create a pull request.
Licence 📄
MIT licence
Authors ✒️
This work is developed and maintained by:
- Miguel Evangelista Alvarado - @mevangelista-alvarado
- Jose C. Ruíz Pantaleón - @jcrpanta
- Pablo Suárez Serrato - @psuarezserrato
Thanks for citing our work if you use it! 🤓
@articleInfo{Evangelista-Alvarado Miguel Ángel 2021 Journal of Geometric Mechanics,
title = {On computational Poisson geometry I: Symbolic foundations},
journal = {Journal of Geometric Mechanics},
volume = {13},
number = {4},
pages = {607-628},
year = {2021},
issn = {1941-4889},
doi = {10.3934/jgm.2021018},
url = {/article/id/a7acc48a-54f1-4348-8b45-f5a31428bd29},
author = {Evangelista-Alvarado Miguel Ángel and Ruíz-Pantaleón José Crispín and Suárez-Serrato Pablo},
}
Acknowledgments
This work was partially supported by the grants CONACyT, “Programa para un Avance Global e Integrado de la Matemática Mexicana” CONACyT-FORDECYT 26566 and "Aprendizaje Geométrico Profundo" UNAM-DGAPA-PAPIIT-IN104819. JCRP wishes to also thank CONACyT for a postdoctoral fellowship held during the production of this work.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file poissongeometry-1.1.1.tar.gz
.
File metadata
- Download URL: poissongeometry-1.1.1.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02c4d07e3ebcf934af9d61cc377c77132aa71b286615b8e2d9c38b74d8e40e3d |
|
MD5 | acae11758626e6836ce0b5cb1fb60027 |
|
BLAKE2b-256 | 6e06be9cf92e3831fd0aad3c2df3a18d38e2564f39aa0183422f807afe6516b4 |