Skip to main content

SpiceMix: a probabilistic graphical model for spatial transcriptomics data

Project description

SpiceMix

overview

SpiceMix is an unsupervised tool for analyzing data of the spatial transcriptome. SpiceMix models the observed expression of genes within a cell as a mixture of latent factors. These factors are assumed to have some spatial affinity between neighboring cells. The factors and affinities are not known a priori, but are learned by SpiceMix directly from the data, by an alternating optimization method that seeks to maximize their posterior probability given the observed gene expression. In this way, SpiceMix learns a more expressive representation of the identity of cells from their spatial transcriptome data than other available methods.

SpiceMix can be applied to any type of spatial transcriptomics data, including MERFISH, seqFISH, HDST, and Slide-seq.

Install

pip install spicemix

Usage

from pathlib import Path

import anndata as ad
import torch

from spicemix.model import SpiceMixPlus

# Load datasets
datasets = []
replicate_names = []
for fov in range(5):
    dataset = ad.read_h5ad(f"./example_st_dataset_fov_{replicate}.h5ad") # Each dataset must have spatial information stored as an adjacency matrix
    name = f"{fov}"
    datasets.append(dataset)
    replicate_names.append(name)

# Define hyperparameters
K = 20 # Number of metagenes
lambda_Sigma_x_inv = 1e-4 # Spatial affinity regularization hyperparameter
torch_context = dict(device='cuda:0', dtype=torch.float32) # Context for PyTorch tensor instantiation 

# Initialize
spicemixplus_demo = SpiceMixPlus(
    K=K,
    datasets=datasets,
    lambda_Sigma_x_inv=lambda_Sigma_x_inv,
    torch_context=torch_context
)
    
# Train

## Initialization with NMF
for iteration in range(10):
    spicemixplus_demo.estimate_parameters(update_spatial_affinities=False)
    spicemixplus_demo.estimate_weights(use_neighbors=False)

## Using spatial information
num_iterations = 200
for iteration in range(num_iterations):
    spicemixplus_demo.estimate_parameters()
    spicemixplus_demo.estimate_weights()

# Save to disk
result_filepath = Path(f"./demo_{num_iterations}_iterations.h5ad")
spicemixplus_demo.save_results(result_filepath)
    
# Plot results

...

Tests

To run the provided tests and ensure that SpiceMix can run on your platform, follow the instructions below:

  • Download this repo.
git clone https://github.com/alam-shahul/SpiceMixPlus.git
  • Install pytest in your environment.
pip install pytest
  • Navigate to the root directory of this repo.
  • Run the following command. With GPU resources, this test should execute without errors in ~2.5 minutes:
python -m pytest -s tests/test_spicemix_shared.py

Cite

Cite our paper:

@article{chidester2020spicemix,
  title={SPICEMIX: Integrative single-cell spatial modeling for inferring cell identity},
  author={Chidester, Benjamin and Zhou, Tianming and Ma, Jian},
  journal={bioRxiv},
  year={2020},
  publisher={Cold Spring Harbor Laboratory}
}

paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

popari-0.0.10.tar.gz (43.1 kB view details)

Uploaded Source

Built Distribution

popari-0.0.10-py3-none-any.whl (50.9 kB view details)

Uploaded Python 3

File details

Details for the file popari-0.0.10.tar.gz.

File metadata

  • Download URL: popari-0.0.10.tar.gz
  • Upload date:
  • Size: 43.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.0

File hashes

Hashes for popari-0.0.10.tar.gz
Algorithm Hash digest
SHA256 b74a1459ebb92d44c97c072983eebccfb8c0de1fabdfe449af3639f8534df482
MD5 a63b04deebc67c346221e1b009365dd2
BLAKE2b-256 21e8e83973afc22f48495a9498f1e2539d96f93b077ed3151ea353d58c417aa1

See more details on using hashes here.

File details

Details for the file popari-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: popari-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 50.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.0

File hashes

Hashes for popari-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 c8a4ee3b1bd236b507617620a3b4abe768f676bb92908ff9630a0587a8794ec9
MD5 796d29c820b59acc6d5b49a60f177515
BLAKE2b-256 1c3d128d50837d804bcaa6ee2051a5e5ab8ce5abbacb021d02d9a7ad50a8fedf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page