Weibull Analysis Utilities
Project description
predictr
Weibull Analysis Utilities
Installation
Use the package manager pip to install predictr.
pip install predictr
Usage
Import predictr in python
from predictr import Analysis
Default Parameter values
df: list = None -> failures in seconds, days, bo. of cycles etc., e.g. df = [100, 120, 80, 300]
ds: list = None -> suspensions (right-censored) in seconds, days, bo. of cycles etc., e.g. ds = [300, 400, 400]
show: bool = False -> If True, the Weibull probability plot will be plotted.
plot_style = 'ggplot' -> Choose a style according to your needs. See https://matplotlib.org/3.1.0/gallery/style_sheets/style_sheets_reference.html for styles.
bounds=None -> Use following table to configure everything related to confidence bounds, e.g. if you want to use Monte-Carlo pivotal bounds for the Median Rank Regression: bounds = 'mcpb'.
confidence bounds | mle() | mrr() | uncensored data | censored data | type | argument value |
---|---|---|---|---|---|---|
Beta-Binomial Bounds | - | x | x | x | '2s', '1sl', '1su' | 'bbb' |
Monte-Carlo Pivotal Bounds | - | x | x | x | '2s', '1sl', '1su' | 'mcpb' |
Non-Parametric Bootstrap Bounds | x | x | x | - | '2s', '1sl', '1su' | 'npbb' |
Parametric Bootstrap Bounds | x | x | x | - | '2s', '1sl', '1su' | 'pbb' |
Fisher Bounds | x | - | x | x | '2s', '1sl', '1su' | 'fisher' |
Likelihood Ratio Bounds | x | - | x | x | '2s', '1sl', '1su' | 'lrb' |
bounds_type = '2s' -> '2s': two-sided confidence bounds, '1su': upper confidence bounds, '1sl': lower confidence bounds. E.g. bounds_type = '1sl'.
cl=0.9 -> configure the confidence level in the intervall (0, 1.0)
bcm=None -> Define the bias-correction method when the MLE is being used. Bootstrap bias-corrections are dependent on the number of bootstrap replication and the chosen statistic, e.g. if bcm = 'np_bs': bs_size = 5000 and est_type = 'median'.
bs_size = 5000 -> Resampling/Bootstrap sample size (number of replication). bs_size should be greater than or equal to 2000 for accurate results. The higher the nuber of replication, the longer it takes to compute the bias-correction.
est_type = 'median' -> When using bootstrap bias-corrections, this argument decides which statistic to compute from the bootstrap samples.
The following table provides possible configurations. Bias-corrections for mrr() are not supported, yet.
Bias-correction method | mle() | mrr() | argument value | config. | statistic |
---|---|---|---|---|---|
C4 | x | - | 'c4' | - | - |
hrbu | x | - | 'hrbu' | - | - |
non-parametric Bootstrap correction | x | - | 'np_bs' | bs_size | 'mean', 'median', 'trimmed_mean' |
Parametric Bootstrap correction | x | - | 'p_bs' | bs_size | 'mean', 'median', 'trimmed_mean' |
unit = '-' -> Unit of the elements in df and ds, e.g. unit = 'seconds', unit = 'days', unit = 'ms' etc.
How to use the Maximum Likelihood Estimation (MLE)
Just add '.mle()' after Analysis() object = Analysis().mle()
Uncensored sample
Example:
failures = [0.4508831, 0.68564703, 0.76826143, 0.88231395, 1.48287253, 1.62876357]
prototype_a = Analysis(df=failures, bounds='fisher',show=True).mle()
Censored sample
Example:
failures = [0.4508831, 0.68564703, 0.76826143, 0.88231395, 1.48287253, 1.62876357]
suspensions = [1.9, 2.0, 2.0]
prototype_a = Analysis(df=uncen_sample, bounds='lrb',show=True).mle()
How to use the Maximum Rank Regression (MRR)
Just add '.mrr()' after Analysis() object = Analysis().mrr()
Uncensored sample
Example:
failures = [0.4508831, 0.68564703, 0.76826143, 0.88231395, 1.48287253, 1.62876357]
prototype_a = Analysis(df=failures, bounds='bbb',show=True).mrr()
Censored sample
Example:
failures = [0.4508831, 0.68564703, 0.76826143, 0.88231395, 1.48287253, 1.62876357]
suspensions = [1.9, 2.0, 2.0]
prototype_a = Analysis(df=failures, ds=suspensions, bounds='mcpb',show=True).mrr()
To Do
I will add a homepage with more detailed examples and guidelines for non-experts in the field of reliability engineering.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file predictr-0.1.4.tar.gz
.
File metadata
- Download URL: predictr-0.1.4.tar.gz
- Upload date:
- Size: 1.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72537a1021cb278de58eb49b65fd791caf1bf7c361a6851d6dc98147ff4df010 |
|
MD5 | a7def2d11878d905475548668e241acd |
|
BLAKE2b-256 | d95083c96c320fac39d202c40a2b4980f8eccd5a8c13f169bbbb87e4c8a38f01 |
File details
Details for the file predictr-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: predictr-0.1.4-py3-none-any.whl
- Upload date:
- Size: 18.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bb7fce69e24ad41e44800b6196bb30cc213b9e1d09e4f831e59f8094d8029e7 |
|
MD5 | a0c6458a9c9bcabeca000422a0d407ce |
|
BLAKE2b-256 | 912132d15bb450c29a4f84f2509972c06585f388676083d649401996dfd6a4e2 |