Skip to main content

Preprocessing required data for customer service purpose

Project description

preprocessing_pgp

PyPI Python License Downloads linting: pylint

preprocessing_pgp -- The Preprocessing library for any kind of data -- is a suit of open source Python modules, preprocessing techniques supporting research and development in Machine Learning. preprocessing_pgp requires Python version 3.6, 3.7, 3.8, 3.9, 3.10


Installation

To install the current release:

pip install preprocessing-pgp

To install the release with specific version (e.g. 0.1.3):

pip install preprocessing-pgp==0.1.3

To upgrade package to latest version:

pip install --upgrade preprocessing-pgp

Features

1. Vietnamese Naming Functions

1.1. Preprocessing Names

python
>>> import preprocessing_pgp.name.preprocess import basic_preprocess_name
>>> basic_preprocess_name('Phan Thị    Thúy    Hằng *$%!@#')
Phan Thị Thúy Hằng

1.2. Enrich Vietnamese Names (New Features)

python
>>> import pandas as pd
>>> from preprocessing_pgp.name.enrich_name import process_enrich
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> enrich_data = process_enrich(data, name_col='name')


Cleansing Takes 0m0s


Enrich names takes 5m10s

>>> enrich_data.columns
Index(['name', 'predict', 'final'], dtype='object')

2. Extracting Vietnamese Phones

python
>>> import pandas as pd
>>> from preprocessing_pgp.phone.extractor import extract_valid_phone
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = extract_valid_phone(phones=data, phone_col='phone', print_info=True)
# OF PHONE CLEANED : 0

Sample of non-clean phones:
Empty DataFrame
Columns: [id, phone, clean_phone]
Index: []

100%|██████████| ####/#### [00:00<00:00, ####it/s]

# OF PHONE 10 NUM VALID : ####


# OF PHONE 11 NUM VALID : ####


0it [00:00, ?it/s]

# OF OLD PHONE CONVERTED : ####


# OF OLD LANDLINE PHONE : ####

100%|██████████| ####/#### [00:00<00:00, ####it/s]

# OF VALID PHONE : ####

# OF INVALID PHONE : ####

Sample of invalid phones:
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
|      |      id |       phone | is_phone_valid   | is_mobi   | is_new_mobi   | is_old_mobi   | is_new_landline   | is_old_landline   | phone_convert   |
+======+=========+=============+==================+===========+===============+===============+===================+===================+=================+
|   47 | ####### |   083###### | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
|  317 | ####### |   098###### | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
|  398 | ####### | 039######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
|  503 | ####### | 093######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 1261 | ####### | 096######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 1370 | ####### | 097######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 1554 | ####### | 098######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 2469 | ####### | 032######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 2609 | ####### | 086######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+
| 2750 | ####### | 078######## | False            | False     | False         | False         | False             | False             |                 |
+------+---------+-------------+------------------+-----------+---------------+---------------+-------------------+-------------------+-----------------+

3. Verify Vietnamese Card IDs

python
>>> import pandas as pd
>>> from preprocessing_pgp.card.validation import verify_card
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> verified_data = verify_card(data, card_col='card_id', print_info=True)

##### CLEANSING #####


# NAN CARD ID: ####


# CARD ID CONTAINS NON-DIGIT CHARACTERS: ####


SAMPLE OF CARDS WITH NON-DIGIT CHARACTERS:
              card_id  is_valid  is_personal_id
#######      B#######     False           False
#######      C#######     False           False
#######       G######     False           False
#######     A########     False           False
#######  ###########k     False           False
#######  ###########k     False           False
#######      C#######     False           False
#######      B#######     False           False
#######  PT AR#######     False           False
#######     E########     False           False



# CARD OF LENGTH 9 OR 12: #######
STATISTIC:
True     ######
False     #####
Name: is_valid, dtype: int64




# CARD OF LENGTH 8 OR 11: ###
STATISTIC:
True     ######
False     #####
Name: is_valid, dtype: int64



# CARD WITH OTHER LENGTH: ####
# PASSPORT FOUND: ####


SAMPLE OF PASSPORT:
          card_id  is_valid  card_length clean_card_id  is_passport
#######  B#######      True            8      B#######         True
#######  C#######      True            8      C#######         True
#######  C#######      True            8      C#######         True
#######  B#######      True            8      B#######         True
#######  B#######      True            8      B#######         True
#######  B#######      True            8      B#######         True
#######  C#######      True            8      C#######         True
#######  B#######      True            8      B#######         True
#######  B#######      True            8      B#######         True
#######  B#######      True            8      B#######         True




# DRIVER LICENSE FOUND: 41461


SAMPLE OF DRIVER LICENSE:
          card_id  is_valid  is_personal_id  ...  clean_card_id is_passport  is_driver_license
47   0###########      True           False  ...   0###########       False               True
74   0###########      True           False  ...   0###########       False               True
170  0###########      True           False  ...   0###########       False               True
179  0###########      True           False  ...   0###########       False               True
206  0###########      True           False  ...   0###########       False               True
282  0###########      True           False  ...   0###########       False               True
295  0###########      True           False  ...   0###########       False               True
616  0###########      True           False  ...   0###########       False               True
663  0###########      True           False  ...   0###########       False               True
671  0###########      True           False  ...   0###########       False               True


##### GENERAL CARD ID REPORT #####

COHORT SIZE: #######
STATISTIC:
True     ######
False     #####
PASSPORT: ####
DRIVER LICENSE: ####

4. Extract Information in Vietnamese Address

All the region codes traced are retrieve from Đơn Vị Hành Chính Việt Nam

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • cleaned_<address_col> : The cleaned address retrieve from the raw address column
  • level 1 : The raw city extracted from the cleaned address
  • best level 1 : The beautified city traced from extracted raw city
  • level 1 code : The generated city code
  • level 2 : The raw district extracted from the cleaned address
  • best level 2 : The beautified district traced from extracted raw district
  • level 2 code : The generated district code
  • level 3 : The raw ward extracted from the cleaned address
  • best level 3 : The beautified ward traced from extracted raw ward
  • level 3 code : The generated ward code
  • remained address : The remaining address not being extracted
python
>>> import pandas as pd
>>> from preprocessing_pgp.address.extractor import extract_vi_address
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = extract_vi_address(data, address_col='address')
Cleansing takes 0m0s


Extracting takes 0m22s


Code generation takes 0m3s

>>> extracted_data.columns
Index(['address', 'cleaned_address', 'level 1', 'best level 1', 'level 2',
       'best level 2', 'level 3', 'best level 3', 'remained address',
       'level 1 code', 'level 2 code', 'level 3 code'],
      dtype='object')

5. Validate email address

A valid email is consist of:

  1. Large company email's address (@gmail, @yahoo, @outlook, etc.)
  2. Common email address (contains at least a alphabet character in email's name)
  3. Education email (can start with a number)
  4. Not auto-email

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • is_email_valid : indicator of whether the email is valid or not
python
>>> import pandas as pd
>>> from preprocessing_pgp.email.validator import process_validate_email
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> validated_data = process_validate_email(data, email_col='email')
Cleansing email takes 0m0s


Validating email takes 0m22s

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

preprocessing-pgp-0.1.38.tar.gz (14.6 MB view details)

Uploaded Source

Built Distribution

preprocessing_pgp-0.1.38-py3-none-any.whl (14.6 MB view details)

Uploaded Python 3

File details

Details for the file preprocessing-pgp-0.1.38.tar.gz.

File metadata

  • Download URL: preprocessing-pgp-0.1.38.tar.gz
  • Upload date:
  • Size: 14.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for preprocessing-pgp-0.1.38.tar.gz
Algorithm Hash digest
SHA256 0f8d3cc95fc6649ba31d3399d53d3e96bc0572e457abb28023d16815af5d7c39
MD5 52b35490b36c60b2c2c34075f37c43c5
BLAKE2b-256 21f7206b38d2806daf867465c0e3cd402362331783dc0efcaff9a368e29b441a

See more details on using hashes here.

File details

Details for the file preprocessing_pgp-0.1.38-py3-none-any.whl.

File metadata

File hashes

Hashes for preprocessing_pgp-0.1.38-py3-none-any.whl
Algorithm Hash digest
SHA256 1a7bf847ba613b30c4abcd591da7f7fe121d71bbe29b5060a044a4c5ca2cd774
MD5 49620f5b6a2c5b0a9ccc2ea63d47a308
BLAKE2b-256 e8c6fe23f12095b5fda50a7f9e16239483b3d74c652a392d3653b5b6e018304e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page