Skip to main content

Phase Retrieval algorithms in Python

Project description

PRiPy

Phase Retrieval in Python.

This package intends to implement common phase retrieval algorithms for Adaptive Optics (AO), for use in Python-based AO simulators such as COMPASS and CEO. Ideally, these algorithms should have a common and minimal API, in order to accelerate the testing of various algorithms on a given optical system.

TODO

  • Sandbox examples (numpy AND cupy compatible),
  • CEO examples.
  • COMPASS examples,

Early implementation goals:

  • FF: Fast and Furious Wavefront Sensing,
  • LIFT: LInearised Focal-plane Technique,
  • GS: classical Gerchberg Saxton algorithm for phase estimation,
  • TAME: Taylor-based Moving horizon Estimation,

Medium-term goals:

  • COMPASS API,
  • CEO API.
  • PyPI for pip install

Installation

git clone git@github.com/jcranney/pripy.git
cd pripy
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pripy-0.1.0.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

pripy-0.1.0-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file pripy-0.1.0.tar.gz.

File metadata

  • Download URL: pripy-0.1.0.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.2 importlib-metadata/4.8.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pripy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 bca5d606b55f2e917eb1addc947bd3d86c6a7185a92e419bd34db0b683100921
MD5 50a3ac1af9d6b3c330d3b9c0e7b62bf5
BLAKE2b-256 34574716a8ddb2562f001ed968cad616f8dcb600d122710d3dd099913af8cb31

See more details on using hashes here.

File details

Details for the file pripy-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pripy-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.2 importlib-metadata/4.8.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pripy-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5ceedffb7a00ce03b6c0b8c026b6125b8307c48035b8d9edc2ff5910b23d0b0d
MD5 4c46e7a485431469e25e5880f4abf621
BLAKE2b-256 5c54cb66978e8701455ad3f3e6da91bb3e096a2ecb698f993c89668955cfc0fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page