Skip to main content

Python library and app to extract images from DCM in private-eye format

Reason this release was yanked:

Wrong pillow dependency

Project description

Process DCM

Maintenance GitHub GitHub release (latest by date) GitHub Release PyPI Poetry Ruff pre-commit

About The Project

Python library and app to extract images from DCM files with metadata in private-eye format

Installation and Usage

pip install process-dcm
 Usage: process-dcm [OPTIONS] INPUT_DIR

 Process DICOM files in subfolders, extract images and metadata using parallel processing.
 Version: 0.4.0

╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────╮
│ *    input_dir      TEXT  Input directory containing subfolders with DICOM files. [default: None]    │
│                           [required]                                                                 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────╮
│ --image_format        -f      TEXT     Image format for extracted images (png, jpg, webp). Defaults  │
│                                        to: png                                                       │
│                                        [default: png]                                                │
│ --output_dir          -o      TEXT     Output directory for extracted images and metadata. Defaults  │
│                                        to: exported_data                                             │
│                                        [default: exported_data]                                      │
│ --group               -g               Re-group DICOM files in a given folder by                     │
│                                        AcquisitionDateTime.                                          │
│ --relative            -r               Save extracted data in folders relative to _input_dir_.       │
│ --n_jobs              -j      INTEGER  Number of parallel jobs. Defaults to: 1 [default: 1]          │
│ --mapping             -m      TEXT     Path to CSV containing patient_id to study_id mapping. If not │
│                                        provided and patient_id is not anonymised, a                  │
│                                        'patient_2_study_id.csv' file will be generated               │
│ --keep                -k      TEXT     Keep the specified fields (p: patient_key, n: names, d:       │
│                                        date_of_birth, D: year-only DOB, g: gender)                   │
│ --overwrite           -w               Overwrite existing images if found.                           │
│ --quiet               -q               Silence verbosity.                                            │
│ --version             -V               Prints app version.                                           │
│ --install-completion                   Install completion for the current shell.                     │
│ --show-completion                      Show completion for the current shell, to copy it or          │
│                                        customize the installation.                                   │
│ --help                -h               Show this message and exit.                                   │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────╯

For Developers

To run this project locally, you will need to install the prerequisites and follow the installation section.

Prerequisites

This Project depends on the poetry.

  1. Install poetry, via homebrew or pipx:

    brew install poetry
    

    or

    pipx install poetry
    
  2. Don't forget to use the python environment you set before and, if using VScode, apply it there.

  3. It's optional, but we strongly recommend commitizen, which follows Conventional Commits

Installation

  1. Clone the repo

    git clone https://github.com/pontikos-lab/process-dcm
    cd process-dcm
    

Bumping Version

We use commitizen. The instructions below are only for exceptional cases.

  1. Using poetry-bumpversion. Bump the version number by running poetry version [part] [--dry-run] where [part] is major, minor, or patch, depending on which part of the version number you want to bump.

    Use --dry-run option to check it in advance.

  2. Push the tagged commit created above and the tag itself, i.e.:

    ver_tag=$(poetry version | cut -d ' ' -f2)
    git tag -a v"$ver_tag" -m "Tagged version $ver_tag"
    git push
    git push --tags
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

process_dcm-0.4.1.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

process_dcm-0.4.1-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file process_dcm-0.4.1.tar.gz.

File metadata

  • Download URL: process_dcm-0.4.1.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Linux/6.8.0-1014-azure

File hashes

Hashes for process_dcm-0.4.1.tar.gz
Algorithm Hash digest
SHA256 98631dad19eb8911ad5470275bfe3554bd3e73878b95245cd0a055685e267388
MD5 fa9bf3b76389477aac22400f48c5d8e9
BLAKE2b-256 ffbbc186e6eabe8c9c9dd547a5dbc2b9c395beb2318b0e092f4344662cb44f6f

See more details on using hashes here.

File details

Details for the file process_dcm-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: process_dcm-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Linux/6.8.0-1014-azure

File hashes

Hashes for process_dcm-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9f889aed3da12f561bb292a32b01bdd1eb230ad56cc9ae7219cbb71e2f02125c
MD5 ddace101221e25e7e2f78d0dd9aa9da3
BLAKE2b-256 daedbc0ec8c0716628cc9be0150ccff957288fd04ae80f331eaba1db1ec4d474

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page