A command line interface for dadi
Project description
dadi-cli
dadi-cli
provides a robust and user-friendly command line interface for dadi1 to help users to quickly apply dadi
to their research. dadi
is a flexible python package for inferring demographic history and the distribution of fitness effects (DFE) from population genomic data. However, using dadi
requires knowledge of python and patience to tune different models.
Installation
To install dadi-cli
, users should clone this repo and use the following command
python setup.py install
To get help information, users can use
dadi-cli -h
There are nine subcommands in dadi-cli
:
GenerateFs
GenerateCache
InferDM
InferDFE
BestFit
Stat
Plot
Model
Pdf
To display help information for each subcommand, users can use -h
.
For example,
dadi-cli GenerateFs -h
The workflow
Usage: An Example
Here we use the data from the 1000 Genomes Project to demonstrate how to apply dadi-cli
in research.
Generating allele frequency spectrum from VCF files
dadi-cli
only accepts VCF files to generate allele frequency spectra. To generate a spectrum, users can use
dadi-cli GenerateFs --vcf ./examples/data/1KG.YRI.CEU.biallelic.synonymous.snps.withanc.strict.vcf.gz --pop-info ./examples/data/1KG.YRI.CEU.popfile.txt --pop-ids YRI CEU --projections 20 20 --polarized --output ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs
dadi-cli GenerateFs --vcf ./examples/data/1KG.YRI.CEU.biallelic.nonsynonymous.snps.withanc.strict.vcf.gz --pop-info ./examples/data/1KG.YRI.CEU.popfile.txt --pop-ids YRI CEU --projections 20 20 --polarized --output ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs
Here ./examples/data/1KG.YRI.CEU.popfile.txt
is a file providing the population information for each individual. In the population information file, each line contains two fields. The first field is the name of the individual, and the second field is the name of the population that the individual belongs to. For example,
NA12718 CEU
NA12748 CEU
NA12775 CEU
NA19095 YRI
NA19096 YRI
NA19107 YRI
--pop-ids
specifies the ID of the population. Here we have two populations YRI and CEU. The population IDs should match those listed in the population information file above.
--projections
specifies the sample size of the population. Here we have 108 YRI individuals and 99 CEU individuals. Therefore, we have 216 and 198 haplotypes for YRI and CEU respectively. We use a lower sample size here, because it allows us to speed up examples.
By default, dadi-cli
generates folded spectra. To generate unfolded spectra, users should add --polarized
and the VCF files should have the AA
in the INFO
field to specify the ancestral allele for each SNP.
While making the spectrum, users can also mask the singleton calls that are exclusive to the population(s) with --mask-singleton
or mask the exclusive and shared singleton calls with --mask-singleton-shared
.
Inferring demographic models
In this example, we infer a demographic model from the spectrum for synonymous SNPs. Here, we use the split_mig
model. In this model, the ancestral population diverges into two populations, which then have an instantaneous change of population size with migration between the two populations over time. To see descriptions of the four parameters of the split_mig
model, use dadi-cli Model --names split_mig
.
By default, with unfolded data an additional parameter is added, which quantifies the proportion of sites for which the ancestral state was misidentified.
(To disable this, use the --nomisid
option.)
Therefore, we have five parameters in total.
To start the inference, users should specify the lower bounds and upper bounds for these parameters with --lbounds
and --ubounds
. For demographic models, setting parameter boundaries prevents optimizers from going into parameter spaces that are hard for dadi
to calculate, such as low population size, high time, and high migration.
In this case, we set the range of relative population sizes to be explored as 1e-3 to 100, the range of divergence time to 0 to 1, the range of migration rates from 0 to 10, and the range of misidentification proportions to 0 to 0.5.
(Parameters can be fixed to certain values with --constants
. In that case, -1
indicates that a parameter is free to vary.)
Because we need to run optimization several times to find a converged result with maximum likelihood, we use --optimizations
to specify how many times the optimization will run. dadi-cli
can use multiprocessing to run optimizations in parallel and by default the max number of CPUs available will be utilized. If users want fewer CPUs to be used, they can use the --cpus
option to pass in the number of CPUs they want utilized for multiprocessing. If GPUs are available, they can be used by passing the --gpus
option with the number of GPUs to be used.
dadi-cli InferDM --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --model split_mig --lbounds 1e-3 1e-3 0 0 0 --ubounds 100 100 1 10 0.5 --output ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params --optimizations 10
After the optimization, a file ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.opts.0
will be made. Any subsequent optimzations using the same output argument will be number .1
, .2
, etc.
Users can use BestFit
to obtain the best fit parameters across all optimization runs with a matching prefix.
dadi-cli BestFit --input-prefix ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM --lbounds 1e-3 1e-3 0 0 0 --ubounds 100 100 1 10 0.5
The result is in a file ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits
. This file contains the 100 highest likelihood parameter sets found (if at least that many optimizations have been carried out). If optimization converged, then the file also contains the converged results.
The results look like:
# /Users/tjstruck/anaconda3/envs/dadicli/bin/dadi-cli BestFit --input-prefix ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM --ubounds 10 10 1 10 1 --lbounds 10e-3 10e-3 10e-3 10e-3 10e-5
# /Users/tjstruck/anaconda3/envs/dadicli/bin/dadi-cli InferDM --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --model split_mig --p0 1 1 .5 1 .5 --ubounds 10 10 1 10 1 --lbounds 10e-3 10e-3 10e-3 10e-3 10e-5 --grids 60 80 100 --output ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params --optimizations 10 --maxeval 200
#
# Converged results
# Log(likelihood) nu1 nu2 T m misid theta
-1358.656798384051 2.1981613475071864 0.5158391424566413 0.28524739475343264 1.2375756394365451 0.020683288489282133 6771.157432134759
-1358.6880947964542 2.196984200820028 0.5133914664638932 0.28277200202566527 1.2413354976672208 0.020632166672609045 6786.9015918739915
-1358.6985706673254 2.193829701862104 0.5150503581819097 0.28755609071963395 1.2477300697512446 0.020689738141788896 6765.701504724712
-1358.7339671606906 2.215035226792488 0.5170682238957518 0.2855564758596486 1.2327369856712844 0.02071860093359053 6759.1696821323685
#
# Top 100 results
# Log(likelihood) nu1 nu2 T m misid theta
-1358.656798384051 2.1981613475071864 0.5158391424566413 0.28524739475343264 1.2375756394365451 0.020683288489282133 6771.157432134759
-1358.6880947964542 2.196984200820028 0.5133914664638932 0.28277200202566527 1.2413354976672208 0.020632166672609045 6786.9015918739915
-1358.6985706673254 2.193829701862104 0.5150503581819097 0.28755609071963395 1.2477300697512446 0.020689738141788896 6765.701504724712
-1358.7339671606906 2.215035226792488 0.5170682238957518 0.2855564758596486 1.2327369856712844 0.02071860093359053 6759.1696821323685
-1358.9273502384722 2.2161166322584114 0.5192238541188319 0.2805756463060831 1.211174886229439 0.020776317690376894 6774.695201641862
-1359.391018756372 2.2144196583672064 0.5133883753095932 0.2936398676168146 1.2635603043453991 0.021378007902017316 6734.565951708204
-1370.3128577096236 2.2965153967334837 0.5252579237019416 0.3301972600288801 1.2726527078754761 0.021832076042802986 6531.457050865405
-1437.4626671227088 2.348110308415506 0.6039083548424201 0.456754335717111 1.2524206835381557 0.030106689556776402 5971.036610931144
-1591.7611157189594 1.9723568097803748 0.5074933640133197 0.9819908721498116 1.6576780338511465 0.024964816092429044 5651.0110782323845
-2008.8420038152385 4.223980226535977 0.7590647581822983 0.2679298140727045 0.7488053157919355 0.01757046441838214 5977.616341188507A
Because there is randomness built into dadi-cli for where the starting parameters are for each optimization, it is possible the results could have not converged. Some things that can be done when using InferDM
are increasing the max number of parameter sets each optimization will attempt with the --maxeval
option. Users can also try to use a global optimization before moving onto the local optimization with the --global-optimization
option. 25% of the number of optimizations the user passes in will be used for the global and the remaining will be used for the local optimization.
Using BestFit
, users can adjust the criteria for convergence. By default optimizations are considered convergent if there are two other optimizations with a log-likelihood within 0.01% units of the optimization with the best log-likelihood. This criteria can be adjusted using the --delta-ll
option and passing in the percentage difference in decimal form (so the default is 0.0001, rather than 0.01). Generally a higher --delta-ll
can result in a false positive convergence, but this is dependent on the data being used (especially the sample size can effect the size of the log-likelihood). Optimizations in the bestfit file will be ordered by log-likelihood and should be examined closely for similarity of parameter values in convergent fits.
Finally, if you have experience with the data you are using, you can use the --check-convergence
or --force-convergence
option in InferDM
. The --check-convergence
option will run BestFit
after each optimization to check for convergence and stop running optimizations once convergence is reached. The --force-convergence
option will constantly add new optimization runs until convergence is reached. When using --check-convergence
or --force-convergence
you can pass in a value with --delta-ll
as well to change the convergence criteria.
Sometimes parameters may be close to the boundaries. Users should be cautious and test increasing the boundaries to examine whether these boundaries would affect the results significantly. The best fit parameters are shown below mirroring the bestfits file. The first column is the log-likelihood, then the corresponding to these parameters, and the last column is the population-scaled mutation rate of the synonymous SNPs.
log-likelihood | nu1 | nu2 | T | m | misid | theta |
---|---|---|---|---|---|---|
-1358.66 | 2.2 | 0.52 | 0.29 | 1.24 | 0.021 | 6772 |
Generating caches for DFE inference
After inferring a best fit demographic model, users may also infer distributions of fitness effects (DFEs) from data. To perform DFE inference, users need to first generate of cache of frequency spectra. Because we use the split_mig
model in the demographic inference, we need to use the same demographic model plus selection, the split_mig_sel
model or the split_mig_sel_single_gamma
model. The split_mig_sel
model is used for inferring the DFE from two populations by assuming the population-scaled selection coefficients are different in the two populations, while the split_mig_sel_single_gamma
model assumes the population-scaled selection coefficients are the same in the two populations.
Here, --model
specifies the demographic model plus selection used in the inference. --demo-popt
specifies the demographic parameters, which are stored in ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits
. --sample-size
defines the population size of each population. --cpus 2
indicates that the computation will use 2 CPUs. The output is pickled and can access through the pickle
module in Python
. By default GenerateCache
will make the cache for the situation where the selection coefficients are the same in the two populations. If you want to to make the cache for the situation where the selection coefficients are independent from one another, use the --dimensionality 2
option. You can use the --gamma-bounds
option to choose the range of the gamma distribution and the --gamma-pts
option can be used to specify the number of selection coefficients that will be selected in that range to generate your cache. Note that the higher (more negative) you make the --gamma-bounds
, the bigger the grid points you will want to use.
dadi-cli GenerateCache --model split_mig_sel_single_gamma --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --sample-size 20 20 --grids 60 80 100 --gamma-pts 10 --gamma-bounds 1e-4 200 --output ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --cpus 4
dadi-cli GenerateCache --model split_mig_sel --dimensionality 2 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --sample-size 20 20 --grids 60 80 100 --gamma-pts 10 --gamma-bounds 1e-4 200 --output ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.spectra.bpkl --cpus 4
User defined demographic models
Users can also import their own models into dadi-cli. In the examples/data
folder, there is a file split_mig_fix_T_models.py
which has a custom demographic model and demographic models with selection. The file imports various functions from dadi that are used to build demographic models.
from dadi import Numerics, Integration, PhiManip, Spectrum
Then defines the demographic model:
def split_mig_fix_T(params, ns, pts):
"""
Instantaneous split into two populations of specified size, with symmetric migration and a fixed time point.
"""
nu1,nu2,m = params
xx = Numerics.default_grid(pts)
phi = PhiManip.phi_1D(xx)
phi = PhiManip.phi_1D_to_2D(xx, phi)
phi = Integration.two_pops(phi, xx, 0.3, nu1, nu2, m12=m, m21=m)
fs = Spectrum.from_phi(phi, ns, (xx,xx))
return fs
dadi-cli checks models for the names and number of parameters, so after defining the demographic model we add an attribute for a list of the parameter names:
split_mig_fix_T.__param_names__ = ['nu1', 'nu2', 'm']
If you want to preform a DFE inference, you will need to add gamma
parameters for gamma
arguments when initializing $\phi$, ex:
dadi.PhiManip.phi_1D(xx, gamma=gamma_Pop1)
And for integration steps, ex:
dadi.Integration.two_pops(phi, xx, T, nu1, nu2, m12=m, m21=m, gamma1=gamma_Pop1, gamma2=gamma_Pop2)
When making your demographic models with selection and setting the inital $\phi$, take care to consider which population is is the ancestral population for the gamma argument in dadi.PhiManip.phi_1D
.
Because custom model files can have multiple models in them, users will still want to use --model
to pass in the model for demographic inference and cache generation. Here are some quick examples for users to run:
dadi-cli InferDM --model split_mig_fix_T --model-file examples/data/split_mig_fix_T_models --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --p0 2 0.5 1.2 .02 --ubounds 3 1 2 0.03 --lbounds 1 1e-1 1e-1 1e-3 --grids 60 80 100 --output ./examples/results/demo/1KG.YRI.CEU.20.split_mig_fix_T.demo.params --optimizations 20 --maxeval 300 --check-convergence
dadi-cli GenerateCache --model split_mig_fix_T_one_s --model-file examples/data/split_mig_fix_T_models --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig_fix_T.demo.params.InferDM.bestfits --sample-size 20 20 --grids 160 180 200 --gamma-pts 10 --gamma-bounds 1e-4 20 --output ./examples/results/caches/1KG.YRI.CEU.20.split_mig_one_s_psudo_new_model.spectra.bpkl --cpus 4
dadi-cli GenerateCache --model split_mig_fix_T_sel --model-file examples/data/split_mig_fix_T_models --dimensionality 2 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig_fix_T.demo.params.InferDM.bestfits --sample-size 20 20 --grids 160 180 200 --gamma-pts 10 --gamma-bounds 1e-4 20 --output ./examples/results/caches/1KG.YRI.CEU.20.split_mig_sel_psudo_new_model.spectra.bpkl --cpus 4
Inferring DFE
For inferring the DFE, we fit the spectrum from nonsynonymous SNPs. Although our data come from two populations, we will first infer a one-dimensional DFE, which assumes that selection coefficients are equal in the two populations.
We define the marginal DFE as a lognormal distribution with --pdf1d
. We use --ratio
to specify the ratio of the nonsynonymous SNPs to the synonymous SNPs to calculate the population-scaled mutation rate of the nonsynonymous SNPs. Our parameters are log_mu
the mean of the lognormal distribution, log_sigma
the standard deviation of the lognormal distribution, and misid
.
dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --pdf1d lognormal --p0 1 1 .5 --lbounds -10 0.01 0 --ubounds 10 10 0.5 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.params --optimizations 10 --maxeval 400 --check-convergence
The result is
# /home/u25/tjstruck/miniconda3/bin/dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --pdf1d lognormal --p0 1 1 .5 --lbounds 0 0.01 0 --ubounds 10 10 1 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.params --optimizations 10 --maxeval 400 --check-convergence
# /home/u25/tjstruck/miniconda3/bin/dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --pdf1d lognormal --p0 1 1 .5 --lbounds 0 0.01 0 --ubounds 10 10 1 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.params --optimizations 10 --maxeval 400 --check-convergence
#
# Converged results
# Log(likelihood) log_mu log_sigma misid theta
-1388.7168092990519 5.490553018509483 7.617358688984522 0.016580353311106688 15644.214296668904
-1388.7182268917072 5.48833179537645 7.612505954083041 0.016574649919878663 15644.214296668904
-1388.7511876804606 5.465373979901826 7.565453530395414 0.01664401774234844 15644.214296668904
#
# Top 100 results
# Log(likelihood) log_mu log_sigma misid theta
-1388.7168092990519 5.490553018509483 7.617358688984522 0.016580353311106688 15644.214296668904
-1388.7182268917072 5.48833179537645 7.612505954083041 0.016574649919878663 15644.214296668904
-1388.7511876804606 5.465373979901826 7.565453530395414 0.01664401774234844 15644.214296668904
Similar to the best fit parameters in ./examples/results/demo/1KG.YRI.CEU.split_mig.bestfit.demo.params
, the first column is the log-likelihood followed by the parameters.
likelihood | mu | sigma | misidentification |
---|---|---|---|
-1389 | 5.5 | 7.6 | 0.017 |
Inferring a bivariate lognormal joint DFE
Here we will infer a joint DFE with selection potentially being different in the two populations. We define the DFE as a bivariate lognormal distribution with --pdf2d
and pass in a cache that assumes the population-scaled selection coefficients are different in the two populations through --cache2d
. The bivariate lognormal has an extra parameter rho
, the correlation of the DFE between the populations. We can allow mu_log
and sigma_log
be different or the same in our populations. dadi-cli
will run either the symmetric (shared mu_log
and sigma_log
) or asymmetric (independent mu_log
and sigma_log
) bivariate lognormal based on the number of parameters. For the symmetric bivariate lognormal the parameters are log_mu
, log_sigma
, and rho
, the asymmetric bivariate lognormal the parameters are log_mu1
, log_mu2
, log_sigma1
, log_sigma2
, and rho
, where 1 denotes the first population and 2 denotes the second population.
An example of running a symmetrical bivariate lognormal is:
dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache2d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.spectra.bpkl --pdf2d biv_lognormal --p0 1 1 .5 .5 --lbounds -10 0.01 0.001 0 --ubounds 10 10 0.999 0.5 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.bivariate_sym_lognormal.params --optimizations 15 --maxeval 400 --check-convergence
An example of running an asymmetrical bivariate lognormal is:
dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache2d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.spectra.bpkl --pdf2d biv_lognormal --p0 1 1 1 1 .5 .5 --lbounds -10 -10 0.01 0.01 0.001 0 --ubounds 10 10 10 10 0.999 0.5 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.bivariate_asym_lognormal.params --optimizations 10 --maxeval 400 --check-convergence
Inferring mixture model joint DFE
Here, we will use a mixture of a univariate lognormal and a bivariate lognormal distribution. To make the mixture we pass in options for both 1D and 2D: --pdf1d
, --pdf2d
, --cache1d
, and --cache2d
. Because the mixture model is assuming some proportion of the DFE is lognormal and the other is bivariate, the bivariate is symmeteric. The parameters for the mixture lognormal DFE are log_mu
, log_sigma
, rho
,and w
, the proportional weight of the bivariate lognormal DFE (1-w
would be the weight of the univariate lognormal distribution). In this example we fix rho
of the bivariate component to 0 with the --constants
option.
dadi-cli InferDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --cache2d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.spectra.bpkl --pdf1d lognormal --pdf2d biv_lognormal --mix-pdf mixture_lognormal --p0 1 1 0 .5 .5 --lbounds -10 0.01 -1 0.001 0 --ubounds 10 10 -1 0.999 0.5 --constants -1 -1 0 -1 -1 --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --ratio 2.31 --output ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.lognormal_mixture.params --optimizations 1 --maxeval 400 --check-convergence
Similar to the best fit parameters in ./examples/results/demo/1KG.YRI.CEU.split_mig.bestfit.demo.params
, the first column is the log-likelihood.
likelihood | mu | sigma | rho | w | misidentification |
---|---|---|---|---|---|
-1389 | 5.51 | 7.65 | 0 | 0 | 0.017 |
Performing statistical testing
To performing statistical testing with the Godambe Information Matrix (GIM), users should first use GenerateFs
to generate bootstrapping data from VCF files. In this example we generate 20 bootstraps to save on time, but we recommend users do 100. --chunk-size
is the max length of chunks the chromosomes will be broken up into and used to randomly draw from with replacement to make our bootstrapped chromosomes.
dadi-cli GenerateFs --vcf ./examples/data/1KG.YRI.CEU.biallelic.synonymous.snps.withanc.strict.vcf.gz --pop-info ./examples/data/1KG.YRI.CEU.popfile.txt --pop-ids YRI CEU --projections 20 20 --polarized --bootstrap 20 --chunk-size 1000000 --output ./examples/results/fs/bootstrapping_syn/1KG.YRI.CEU.20.synonymous.snps.unfold
dadi-cli GenerateFs --vcf ./examples/data/1KG.YRI.CEU.biallelic.nonsynonymous.snps.withanc.strict.vcf.gz --pop-info ./examples/data/1KG.YRI.CEU.popfile.txt --pop-ids YRI CEU --projections 20 20 --polarized --bootstrap 20 --chunk-size 1000000 --output ./examples/results/fs/bootstrapping_non/1KG.YRI.CEU.20.nonsynonymous.snps.unfold
To estimate the confidence intervals for the demographic parameters, users can use
dadi-cli StatDM --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --model split_mig --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --grids 60 80 100 --bootstrapping-dir ./examples/results/fs/bootstrapping_syn/ --output ./examples/results/stat/1KG.YRI.CEU.20.split_mig.bestfit.demo.params.godambe.ci
To estimate the confidence intervals for the joint DFE parameters, users can use
dadi-cli StatDFE --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --dfe-popt ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.params.InferDFE.bestfits --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --pdf1d lognormal --bootstrapping-nonsynonymous-dir ./examples/results/fs/bootstrapping_non/ --bootstrapping-synonymous-dir ./examples/results/fs/bootstrapping_non/ --output ./examples/results/stat/1KG.YRI.CEU.20.split_mig.bestfit.dfe.1D_lognormal.params.godambe.ci
Three different step sizes are tested when using the GIM. Ideally 95% confidence intervals will be consistent between step sizes.
Plotting
dadi-cli
can plot allele frequency spectrum from data or compare the spectra between model and data.
To plot frequency spectrum from data, users can use
dadi-cli Plot --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --output ./examples/results/plots/1KG.YRI.CEU.20.synonymous.snps.unfold.fs.pdf --model split_mig
dadi-cli Plot --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --output ./examples/results/plots/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs.pdf --model split_mig
To compare two frequency spectra from data, users can use
dadi-cli Plot --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --fs2 ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --output ./examples/results/plots/1KG.YRI.CEU.20.synonymous.vs.nonsynonymous.snps.unfold.fs.pdf --model None
To compare frequency spectra between a demographic model without selection and data, users can use
dadi-cli Plot --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --demo-popt ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.params.InferDM.bestfits --output ./examples/results/plots/1KG.YRI.CEU.20.synonymous.snps.vs.split_mig.pdf --model split_mig
To compare frequency spectra between a demographic model with selection and data, users can use
dadi-cli Plot --fs ./examples/results/fs/1KG.YRI.CEU.20.nonsynonymous.snps.unfold.fs --model split_mig --pdf1d lognormal --pdf2d biv_lognormal --dfe-popt ./examples/results/dfe/1KG.YRI.CEU.20.split_mig.dfe.lognormal_mixture.params.InferDFE.bestfits --cache1d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.single.gamma.spectra.bpkl --cache2d ./examples/results/caches/1KG.YRI.CEU.20.split_mig.sel.spectra.bpkl --output ./examples/results/plots/1KG.YRI.CEU.20.nonsynonymous.snps.vs.lognormal_mixture.pdf
By default, dadi-cli
projects the sample size down to 20 for each population. Users can use --projections
to lower the sample size for visualization purposes.
Using WorkQueue for distributed inference with dadi-cli
dadi-cli
InferDM
and InferDFE
has built in options to work with Cooperative Computing Tools (CCTools
)'s Work Queue
for launching independent optimizations across multiple machines. This example will be for submitting jobs to a Slurm Workload Manager
. First we want to submit a factory.
work_queue_factory -T local -M dm-inference -P ./tests/mypwfile --workers-per-cycle=0 --cores=1 &
dm-inference
is the project name and mypwfile
is a file containing a password, both of which are needed for dadi-cli
use. Next you'll want to submit jobs from dadi-cli
.
dadi-cli InferDM --fs ./examples/results/fs/1KG.YRI.CEU.20.synonymous.snps.unfold.fs --model split_mig --p0 1 1 .5 1 .5 --ubounds 10 10 1 10 1 --lbounds 10e-3 10e-3 10e-3 10e-3 10e-5 --grids 60 80 100 --output ./examples/results/demo/1KG.YRI.CEU.20.split_mig.demo.work_queue.params --optimizations 5 --maxeval 200 --check-convergence --work-queue dm-inference ./tests/mypwfile
dadi-cli
will send the number of workers as the number of optimizations you request. The check-convergence
and force-convergence
options work with Work Queue
as well.
Available demographic models
dadi-cli
provides a subcommand Model
to help users finding available demographic models in dadi
.
To find out available demographic models, users can use
dadi-cli Model --names
Then the available demographic models will be displayed in the screen:
Available 1D demographic models:
- bottlegrowth_1d
- growth
- snm_1d
- three_epoch
- two_epoch
Available 2D demographic models:
- bottlegrowth_2d
- bottlegrowth_split
- bottlegrowth_split_mig
- IM
- IM_pre
- split_mig
- split_asym_mig
- snm_2d
Available demographic models with selection:
- equil
- equil_X
- IM_sel
- IM_sel_single_gamma
- IM_pre_sel
- IM_pre_sel_single_gamma
- split_mig_sel
- split_mig_sel_single_gamma
- split_asym_mig_sel
- split_asym_mig_sel_single_gamma
- two_epoch_sel
- three_epoch_sel
To find out the parameters and detail of a specific model, users can use the name of the demograpic model as the parameter after --names
. For example,
dadi-cli Model --names split_mig
Then the detail of the model will be displayed in the screen:
- split_mig:
Split into two populations of specifed size, with symmetric migration.
Two populations in this model.
params = [nu1,nu2,T,m]
nu1: Size of population 1 after split (in units of Na)
nu2: Size of population 2 after split (in units of Na)
T: Time in the past of split (in units of 2*Na generations)
m: Migration rate between populations (2*Na*m)
Available DFE distributions
dadi-cli
provides a subcommand Pdf
to help users finding available probability density functions for DFE inference in dadi
.
To find out available probability density functions, users can use
dadi-cli Pdf --names
Then the availalbe functions will be displayed in the screen:
Available probability density functions:
- beta
- biv_ind_gamma
- biv_lognormal
- exponential
- gamma
- lognormal
- normal
- mixture
To find out the parameters and the detail of a specific function, users can use the name of the function as the parameter after --names
. For example,
dadi-cli Pdf --names lognormal
Then the detail of the function will be displayed in the screen:
- lognormal:
Lognormal probability density function.
params = [log_mu, log_sigma]
Dependencies
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file project_cli_ab3nzac1yc_hatch-1.0.3.tar.gz
.
File metadata
- Download URL: project_cli_ab3nzac1yc_hatch-1.0.3.tar.gz
- Upload date:
- Size: 40.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e20baed500cd165d9fbe899e6cac7bc2540060e1623db4ee810d61489e615dad |
|
MD5 | 3802b87da5d8afc6926844822235425a |
|
BLAKE2b-256 | 25f01539fdff5286f80189656f5d2cd1b61fee1b0a97749021ff6f0afb77b426 |
File details
Details for the file project_cli_ab3nzac1yc_hatch-1.0.3-py2.py3-none-any.whl
.
File metadata
- Download URL: project_cli_ab3nzac1yc_hatch-1.0.3-py2.py3-none-any.whl
- Upload date:
- Size: 39.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd07b7396cf1f4627a5ac2afe74eeef2cd7018b7886563a08f090a976c54d62a |
|
MD5 | 388cf4e172779e9e22f956833dfe716c |
|
BLAKE2b-256 | 9dde658ef20b1eb020ac1c42a77e332a7eab35e133a7414599dc0804bd2b8d9a |