Dynamic maps generation based on natural language prompts using Retrieval-Augmented Generation (RAG)
Project description
prompt2map
prompt2map is a Python package that generates dynamic maps based on natural language prompts, utilizing Retrieval-Augmented Generation (RAG).
Quickstart
Initialize the mapper with geospatial data
To get started, initialize Prompt2Map by providing a geospatial data file, embeddings, and descriptions of the fields in your dataset:
from prompt2map import Prompt2Map
# Example with portuguese 2021 Census
p2m = Prompt2Map.from_file(
"censo2021portugal",
"data/censo_pt_2021/geodata.parquet", # Main geospatial data source that will be queries and mapped
"data/censo_pt_2021/embeddings.parquet", # Embedding for string literals
"data/censo_pt_2021/variable_descriptions.csv" # Description of fields in geodata.parquet
)
Make a query
Once initialized, you can generate maps by making natural language queries. For example, to create a population density map:
prompt = "Population density map of the district of Setúbal by parish in inhabitants / km2"
generated_map = p2m.to_map(prompt)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
prompt2map-0.1.3.tar.gz
(2.6 MB
view details)
Built Distribution
File details
Details for the file prompt2map-0.1.3.tar.gz
.
File metadata
- Download URL: prompt2map-0.1.3.tar.gz
- Upload date:
- Size: 2.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca57843f026fcb74216eecc93bf8b71e17cf72091584a49444fccf8f920f64bd |
|
MD5 | 93826f932d287fb9801ca6d83237b3ff |
|
BLAKE2b-256 | f1ccffe80948ccdd6cc4ea6be13fed629c3f8cc9612b0a04b2794bdb119bcb65 |
File details
Details for the file prompt2map-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: prompt2map-0.1.3-py3-none-any.whl
- Upload date:
- Size: 1.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9f7fb6e13ddf15a62791168cba145e81c7cbb2e6d54827ee2a7642261972531 |
|
MD5 | e842fd83a75c00ee7ecd5d1ea051495d |
|
BLAKE2b-256 | f011dd2574348fff77c37ad93c301686ab9450d8a980009f127a88e17b3af2d3 |