Skip to main content

Writers and controlled vocabulary manager for PSI-MS's mzML and mzIdentML standards

Project description

psims

Prototype work for a unified API for writing Proteomics Standards Initiative standardized formats for mass spectrometry:

  1. mzML
  2. mzIdentML
  3. mzMLb

See the Documenation for more information

Installation

With pip:

pip install psims

With conda:

conda install -c bioconda -c conda-forge -c defaults psims

mzML Minimal Example

from psims.mzml.writer import MzMLWriter

# Load the data to write
scans = get_scan_data()

with MzMLWriter(open("out.mzML", 'wb'), close=True) as out:
    # Add default controlled vocabularies
    out.controlled_vocabularies()
    # Open the run and spectrum list sections
    with out.run(id="my_analysis"):
        spectrum_count = len(scans) + sum([len(products) for _, products in scans])
        with out.spectrum_list(count=spectrum_count):
            for scan, products in scans:
                # Write Precursor scan
                out.write_spectrum(
                    scan.mz_array, scan.intensity_array,
                    id=scan.id, params=[
                        "MS1 Spectrum",
                        {"ms level": 1},
                        {"total ion current": sum(scan.intensity_array)}
                     ])
                # Write MSn scans
                for prod in products:
                    out.write_spectrum(
                        prod.mz_array, prod.intensity_array,
                        id=prod.id, params=[
                            "MSn Spectrum",
                            {"ms level": 2},
                            {"total ion current": sum(prod.intensity_array)}
                         ],
                         # Include precursor information
                         precursor_information={
                            "mz": prod.precursor_mz,
                            "intensity": prod.precursor_intensity,
                            "charge": prod.precursor_charge,
                            "scan_id": prod.precursor_scan_id,
                            "activation": ["beam-type collisional dissociation", {"collision energy": 25}],
                            "isolation_window": [prod.precursor_mz - 1, prod.precursor_mz, prod.precursor_mz + 1]
                         })

Citing

If you use psims in an academic project, please cite:

Klein, J. A., & Zaia, J. (2018). psims - A declarative writer for mzML and mzIdentML for Python. Molecular & Cellular Proteomics, mcp.RP118.001070. https://doi.org/10.1074/mcp.RP118.001070

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psims-1.3.4.tar.gz (18.8 MB view details)

Uploaded Source

Built Distribution

psims-1.3.4-py3-none-any.whl (18.8 MB view details)

Uploaded Python 3

File details

Details for the file psims-1.3.4.tar.gz.

File metadata

  • Download URL: psims-1.3.4.tar.gz
  • Upload date:
  • Size: 18.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for psims-1.3.4.tar.gz
Algorithm Hash digest
SHA256 4cac9368616118186fe12dc137adcd12d934df5013956816615b5eaa95cb0573
MD5 7af8e14f2b173464644c2f186746eb49
BLAKE2b-256 6778d40b80bf767fceb283bbdf7ce1df7ea21c72a4af3ae1b7dc90a0dda2890e

See more details on using hashes here.

Provenance

File details

Details for the file psims-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: psims-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for psims-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 c397d839bda7d56124de0848c239753a097ffa3562626b3a554a268f8e59d379
MD5 c4944059320f2fb0dd6df99407a73ea5
BLAKE2b-256 e3f2878d4c109bbcd1ea2d3d35a7e5ae18376868f65e74b1b5355e7df105fbf0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page