Skip to main content

A helper module that builds upon pydantic-settings to generate, read and comment a config file in yaml

Project description

pydantic-settings-yaml-plus

A helper module that builds upon pydantic-settings to generate, read and comment a config file in yaml and improve ENV var capabilities

[!WARNING]
work in progress. please ignore this repo for now

Target use cases

  • Config File Provisioning The idea is to use this module during the build/release- (deploy on pypi.org) or init(First start)-process of your python module to generate a documented yaml file the user can understand.
  • Extended Nested Env Var Parsing Provide complex configs via env var without the need to write json Needs a rewrite with pydantic-settings 2.x

Features

  • Generate a commented/documented yaml file based on your pydantic-settings.BaseSettings class
  • Support for nested listed and dict and var. E.g. MYLIST__0__MYKEY=val -> config.MYLIST``[0].MYKEY=val Needs a rewrite with pydantic-settings 2.x

Known Issues

  • Multiline values are crippled

Goals

  • Have a single source of truth for config and all its meta-data/documentation (type, descpription, examples)
  • All keys/values are addressable by env vars

ToDo / ToInvestigate

  • What about date(times) support?
  • Make indexed env vars work again!
  • Remove debug prints
  • Write some more test
  • Make pypi package

Ideas/Roadmap

  • Generate a mark down doc of all settings
  • Generate template (minimal with required values only or maximum with all values listed) and example config files (all YAML only!)
  • generate diff betwen current config and config model (when config model changed after update)
  • update existing config files metadata
    • Update info, descs
    • Add missing/new required values

How to use

Lets have the following examplary pydantic-settings config.py file:

from typing import List, Dict, Optional, Literal, Annotated

from pydantic import Field
from pydantic_settings import BaseSettings

from pathlib import Path, PurePath


class DatabaseServerSettings(BaseSettings):
    host: Optional[str] = Field(
        default="localhost",
        description="The Hostname the database will be available at",
    )
    port: Optional[int] = Field(
        default=5678, description="The port to connect to the database"
    )
    database_names: List[str] = Field(
        description="The names of the databases to use",
        examples=[["mydb", "theotherdb"]],
    )


class MyAppConfig(BaseSettings):
    log_level: Optional[Literal["INFO", "DEBUG"]] = "INFO"
    app_name: Optional[str] = Field(
        default="THE APP",
        description="The display name of the app",
        examples=["THAT APP", "THIS APP"],
    )
    storage_dir: Optional[str] = Field(
        description="A directory to store the file of the apps.",
        default_factory=lambda: str(Path(PurePath(Path().home(), ".config/myapp/"))),
    )
    admin_pw: Annotated[str, Field(description="The init password the admin account")]
    database_server: DatabaseServerSettings = Field(
        description="The settings for the database server",
        examples=[
            DatabaseServerSettings(
                host="db.company.org", port=1234, database_names=["db1", "db2"]
            )
        ],
    )
    init_values: Dict[str, str]

With the help of psyplus we can generate a fully documented

from psyplus import YamlSettingsPlus
from config import MyAppConfig

yaml_handler = YamlSettingsPlus(MyAppConfig, "test.config.yaml")
yaml_handler.generate_config_file(overwrite_existing=True)

which will generate a yaml file ./test.config.yaml that looks like the following:

# ## log_level ###
# Type:          Enum
# Required:      False
# Default:       '"INFO"'
# Allowed vals:  ['INFO', 'DEBUG']
# Env-var:       'LOG_LEVEL'
log_level: INFO

# ## app_name ###
# Type:         str
# Required:     False
# Default:      '"THE APP"'
# Env-var:      'APP_NAME'
# Description:  The display name of the app
# Example No. 1:
#  >app_name: THAT APP
#  >
# Example No. 2:
#  >app_name: THIS APP
app_name: THE APP

# ## storage_dir ###
# Type:         str
# Required:     False
# Env-var:      'STORAGE_DIR'
# Description:  A directory to store the file of the apps.
storage_dir: /home/tim/.config/myapp

# ## admin_pw ###
# Type:         str
# Required:     True
# Env-var:      'ADMIN_PW'
# Description:  The init password the admin account
admin_pw: ''

# ## database_server ###
# Type:         Object
# Required:     True
# Env-var:      'DATABASE_SERVER'
# Description:  The settings for the database server
# Example:
#  >database_server:
#  >  database_names:
#  >  - db1
#  >  - db2
#  >  host: db.company.org
#  >  port: 1234
database_server:

  # ## host ###
  # YAML-path:    database_server.host
  # Type:         str
  # Required:     False
  # Default:      '"localhost"'
  # Env-var:      'DATABASE_SERVER__HOST'
  # Description:  The Hostname the database will be available at
  host: localhost

  # ## port ###
  # YAML-path:    database_server.port
  # Type:         int
  # Required:     False
  # Default:      '5678'
  # Env-var:      'DATABASE_SERVER__PORT'
  # Description:  The port to connect to the database
  port: 5678

  # ## database_names ###
  # YAML-path:    database_server.database_names
  # Type:         List of str
  # Required:     True
  # Env-var:      'DATABASE_SERVER__DATABASE_NAMES'
  # Description:  The names of the databases to use
  # Example:
  #  >database_names:
  #  >- mydb
  #  >- theotherdb
  database_names: []

To use this yaml file you just psyplus: need to parse it and validate on your pydantic-setting model.

from psyplus import YamlSettingsPlus

yaml_handler = YamlSettingsPlus(MyAppConfig, "test.config.yaml")
config: MyAppConfig = yaml_handler.get_config()
print(config.database_server.host)

Alternativly you can parse and validate the pydantic-settings model yourself:

import yaml  # pip install PyYAML

with open("test.config.yaml") as file:
    raw_yaml_str = file.read()
obj: Dict = yaml.safe_load(raw_yaml_str)
config: MyAppConfig = MyAppConfig.model_validate(obj)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psyplus-0.9.3.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

psyplus-0.9.3-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file psyplus-0.9.3.tar.gz.

File metadata

  • Download URL: psyplus-0.9.3.tar.gz
  • Upload date:
  • Size: 16.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for psyplus-0.9.3.tar.gz
Algorithm Hash digest
SHA256 43f7b58fa3a337cd07ee3b2957ead1ec3695088097d07eaabbb59f413479786f
MD5 49da3c9b5cd8db91d863f957e80dfacd
BLAKE2b-256 dc2eb905db31cba4cee7d1ad641dc6725c73767b694f9003889457b158c56db7

See more details on using hashes here.

File details

Details for the file psyplus-0.9.3-py3-none-any.whl.

File metadata

  • Download URL: psyplus-0.9.3-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for psyplus-0.9.3-py3-none-any.whl
Algorithm Hash digest
SHA256 483738cb6c8f963a8eb744ca22e72df53decc9c5fd2b5c8d10fd7e2156e2e1fb
MD5 91911e4f06a134668e5f58f7e9e4041c
BLAKE2b-256 d56cfbe830d808c7e2d82b7d70e4949d573cf365233fe9bcc83a1250c3ea1f1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page