Skip to main content

Python library providing NonParametric models for Value of Travel Time analysis

Project description

PyNP4VTT

NP4VTT is a Python package that enables researchers to estimate and compare nonparametric models in a fast and convenient way. It comprises five nonparametric models for estimating the VTT distribution from data coming from two-attribute-two-alternative stated choice experiments:

  • Local constant model (Fosgerau, 2006, 2007)
  • Local logit (Fosgerau, 2007)
  • Rouwendal model (Rouwendal et al., 2010)
  • Artificial Neural Network (ANN) based VTT model (van Cranenburgh & Kouwenhoven, 2021)
  • Logistic Regression based VTT model (van Cranenburgh & Kouwenhoven, 2021)

Additionally, a Random Valuation model (Ojeda-Cabral, 2006) is included for benchmarking purposes

Installation steps

  • Use pip to install the py-np4vtt library normally:
    • python3 -m pip install py-np4vtt

Examples

We provide Jupyter Notebooks that show how to configure and estimate each model included in NP4VTT:

  • Local constant model: link
  • Local logit: link
  • Rouwendal model: link
  • ANN-based VTT model: link
  • Logistic Regression-based VTT model: link

These examples guide the user through the process of loading a dataset, estimating a nonparametric model, and visualising the VTT distribution using scatter and histogram plots. We use the Norwegian 2009 VTT data to illustrate each example.

Take, for example, the VTT distribution from the Rouwendal model using NP4VTT:

VTT distribution from the Rouwendal model using NP4VTT

References

  • Fosgerau, M. (2006). Investigating the distribution of the value of travel time savings. Transportation Research Part B: Methodological, 40(8), 688–707. https://doi.org/10.1016/j.trb.2005.09.007
  • Fosgerau, M. (2007). Using nonparametrics to specify a model to measure the value of travel time. Transportation Research Part A: Policy and Practice, 41(9), 842–856. https://doi.org/10.1016/j.tra.2006.10.004
  • Rouwendal, J., de Blaeij, A., Rietveld, P., & Verhoef, E. (2010). The information content of a stated choice experiment: A new method and its application to the value of a statistical life. Transportation Research Part B: Methodological, 44(1), 136–151. https://doi.org/10.1016/j.trb.2009.04.006
  • Ojeda-Cabral, M., Batley, R., & Hess, S. (2016). The value of travel time: Random utility versus random valuation. Transportmetrica A: Transport Science, 12(3), 230–248. https://doi.org/10.1080/23249935.2015.1125398
  • van Cranenburgh, S., & Kouwenhoven, M. (2021). An artificial neural network based method to uncover the value-of-travel-time distribution. Transportation, 48(5), 2545–2583. https://doi.org/10.1007/s11116-020-10139-3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_np4vtt-1.0.3.tar.gz (15.3 kB view details)

Uploaded Source

Built Distribution

py_np4vtt-1.0.3-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file py_np4vtt-1.0.3.tar.gz.

File metadata

  • Download URL: py_np4vtt-1.0.3.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-53-generic

File hashes

Hashes for py_np4vtt-1.0.3.tar.gz
Algorithm Hash digest
SHA256 d6659f7fa4898c6b2534ff9573fab4b050beae5dd7f055f699c9aa297a5e1f45
MD5 1d3b9bc3dd73e31e75d7e1555b1f54b4
BLAKE2b-256 29fc83bc9c71e498d5a5c051c0c8746453f6a68310436b49722150f58b31a870

See more details on using hashes here.

File details

Details for the file py_np4vtt-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: py_np4vtt-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-53-generic

File hashes

Hashes for py_np4vtt-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c0685ffe033feb0c354d499165a4cb64f025d9731aa0238cb617ce2a0b907c51
MD5 ee3897821397024d5d2de3d2cc2a5317
BLAKE2b-256 6b76b058e974092ad18cd549ed227330152bbf9c537d2967c2a59b55e8b1e49f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page