A tool to dynamically create protobuf message classes from python data schemas
Project description
PY To Proto
This library holds utilities for converting in-memory data schema representations to Protobuf. The intent is to allow python libraries to leverage the power of protobuf
while maintaining the source-of-truth for their data in pure python and avoiding static build steps.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. Protobuf
also offers cross-language compatibility so that a given set of definitions can be compiled into numerous target programming languages. The downside is that protobuf
requires_a static built step to perform this proto
-> X
conversion step. Alternately, there are multiple ways of representing data schemas in pure python which allow a python library to interact with well-typed data objects. The downside here is that these structures can not easily be used from other programming languages. The pros/cons of these generally fall along the following lines:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
- Python schemas:
- Advantages
- Can be learned quickly using pure-python documentation
- Can be written inline in pure python
- Disadvantages
- Generally, no standard serialization beyond
json
- No automated service implementations
- No/manual mechanism for usage in other programming languages
- Generally, no standard serialization beyond
- Advantages
This project aims to bring the advantages of both types of schema representation so that a given project can take advantage of the best of both:
- Define your structures in pure python for simplicity
- Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Supported Python Schema Types
Currently, objects can be declared using either python dataclasses
or Json TypeDef (JTD). Additional schemas can be added by subclassing ConverterBase
.
Dataclass To Proto
The following example illustrates how dataclasses
and enums
can be converted to proto:
from dataclasses import dataclass
from enum import Enum
from typing import Annotated, Dict, List, Enum
import py_to_proto
# Define the Foo structure as a python dataclass, including a nested enum
@dataclass
class Foo:
class BarEnum(Enum):
EXAM: 0
JOKE_SETTING: 1
foo: bool
bar: List[BarEnum]
# Define the Foo protobuf message class
FooProto = py_to_proto.descriptor_to_message_class(
py_to_proto.dataclass_to_proto(
package="foobar",
dataclass_=Foo,
)
)
# Declare the Bar structure as a python dataclass with a reference to the
# FooProto type
@dataclass
class Bar:
baz: FooProto
# Define the Bar protobuf message class
BarProto = py_to_proto.descriptor_to_message_class(
py_to_proto.dataclass_to_proto(
package="foobar",
dataclass_=Bar,
)
)
# Instantiate a BarProto
print(BarProto(baz=FooProto(foo=True, bar=[Foo.BarEnum.EXAM.value])))
def write_protos(proto_dir: str):
"""Write out the .proto files for FooProto and BarProto to the given
directory
"""
FooProto.write_proto_file(proto_dir)
BarProto.write_proto_file(proto_dir)
JTD To Proto
The following example illustrates how JTD schemas can be converted to proto:
import py_to_proto
# Declare the Foo protobuf message class
Foo = py_to_proto.descriptor_to_message_class(
py_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = py_to_proto.descriptor_to_message_class(
py_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly different value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim topy-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for py_to_proto-0.1.0-py311-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32ae23300357bd2b34d587d93c6e0dd597547433f7bfad01fb737d68b8f87fe5 |
|
MD5 | d3755d7963b8f9de01a92f8cb269e2cf |
|
BLAKE2b-256 | 77c43b5bb1f25a42607b3e64a89f8b491ca8914edaa311d63cb28a886f7a130a |
Hashes for py_to_proto-0.1.0-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf3134818efda495c619335ef5e532a65b87054b4223d23e45e20816501ead9b |
|
MD5 | 9af5e99220ff5ed073fcd884c92cae14 |
|
BLAKE2b-256 | 85111ae468bfc002a3e540ea67558ae28468c389fc779cc82e9dd36d911f01a8 |
Hashes for py_to_proto-0.1.0-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1026e29755731d3868dd21f32ed146672fc9d402ebc5726ab21ba919b34cd74e |
|
MD5 | 746d8daeb8f3ed7e08cc67d49fda2af7 |
|
BLAKE2b-256 | ef72156159cbf9e4c6061bda952ff965e26b4f0d9fc29216fce2d4a528ef4f57 |
Hashes for py_to_proto-0.1.0-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f7324473a6c021a1de191988f024e21087584fd5b9e59fb1ec17f0b9c226d1d |
|
MD5 | 899a534bcbf465b6e94d7972eae6aaf9 |
|
BLAKE2b-256 | fe8985e2fde1a1a73189ad958a80f0e625cce808dc4b00e27fa375be809ac2ae |
Hashes for py_to_proto-0.1.0-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81d2699d94802a53ad4f1e9b83a0669ffbf70a8b2b4ce28123f18a597e04580f |
|
MD5 | 4317ecdfefd5eade0bf441f374b0d81a |
|
BLAKE2b-256 | 90c7ac20c52828f39af31e4b463f55b784c03f35328936aa91b0928c62736aac |