PyToolBelt - Extend your built-in methods.
Project description
Py ToolBelt
This module contains basic functions for built-in datatypes for execute trivial tasks. This functions are available as built-in datatype methods.
Installation
Install package using pip -> pip install py-toolbelt
Usage
Import the module and activate toolbelt
import py_toolbelt py_toolbelt.activate()
After activation, custom functions are available as built-in methods.
For example -
Before activation, in python console, create a list variable list_object = [1, 2, 3]
and type list_object.
and press tab to get prompt of available methods, you see -
>>> list_object.
l.append( l.clear( l.copy( l.count( l.extend( l.index( l.insert( l.pop( l.remove( l.reverse( l.sort(
After activation -
>>> list_object.
l.append( l.count( l.filter( l.insert( l.pop( l.reverse( l.to_tuple(
l.clear( l.count_all( l.flat_list( l.intersection( l.remove( l.sort( l.transform(
l.compact( l.execute( l.get_index( l.is_none( l.remove_index( l.to_dict( l.unique(
l.copy( l.extend( l.index( l.is_not_none( l.remove_values( l.to_set(
To deactivate the toolbelt
py_toolbelt.deactivate()
Available Functions
List
unique()
Eliminate duplicate elements from list.
note - elements should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Example
>>> list_obj = [1, 2, 3, 3, 2]
>>> print(list_obj.unique())
[1, 2, 3]
to_set()
Convert list to set.
note - elements should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Example
>>> list_obj = [1, 2, 3, 3, 2]
>>> print(list_obj.to_set())
{1, 2, 3}
to_tuple()
Convert list to tuple.
note - elements should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Example
>>> list_obj = [1, 2, 3, 3, 2]
>>> print(list_obj.to_tuple())
(1, 2, 3, 3, 2)
to_dict(key_function
=None, value_function
=None)
Convert list to dict with with keys using key_function
and values using value_function
.
Argument
- key_function-
function
, any number of argument are accepted. (required) - value_function -
function
, any number of arguments are accepted. (required)
Example
>>> list_obj = [1, 2, 3, 4]
>>> list_obj.to_dict(key_function=lambda x: x, value_function=lambda y: y * 2)
{1: 1, 2: 4, 3: 6, 4: 8}
remove_index(index
=[], **kwargs
)
Remove indexes from list based on given index values in index
argument and given condition
keyword argument.
**note - ** condition
is applicable on indexes, not on the elements of list
Arguments
- index -
list
/int
, if singleint
is given then remove that index, iflist
is given then remove indexes given in list. (optional, default:[]
)
Keyword arguments
- condition -
function
, if condition function satisfy for index number then it will be removed. - cast -
data_type
, cast the elements of list.
Example
>>> list_obj = ['hello', 'this', 'is', 'a', 'list']
>>> list_obj.remove_index(1)
['hello', 'is', 'a', 'list']
>>> list_obj.remove_index([0, 1, 2])
['a', 'list']
>>> list_obj.remove_index(condition=lambda x: x % 2 == 0) # even indexes will be removed
['is', 'list']
>>> list_obj = [1, 2, 3, 4]
>>> list_obj.remove_index([1, 2], condition=lambda x: x % 2 == 0, cast=str)
['4']
remove_values(values
=[], **kwargs
)
Remove elements from list based on given values in index
argument and given condition
keyword argument.
Arguments
- values -
list
/ any data type, if any other data type is given (except list) then it exclude all occurences, iflist
is given then exclude elements if it exist in given list. (optional, default:[]
)
Keyword arguments
- condition -
function
, if condition function satisfy for list element then it will be removed. - cast -
data_type
, cast the elements of list.
Example
>>> list_obj = ['hello', 'this', 'is', 'a', 'list']
>>> list_obj.remove_values('this')
['hello', 'is', 'a', 'list']
>>> list_obj.remove_values(['hello', 'this', 'is'])
['a', 'list']
>>> list_obj.remove_values(condition=lambda x: x == 'hello')
['this', 'is', 'a', 'list']
>>> list_obj = [1, 2, 3, 4]
>>> list_obj.remove_values([1, 2], condition=lambda x: x % 2 == 0, cast=str)
['4']
filter(condition
, **kwargs
)
Filter list with given condition
function.
It is equivalent to - [element for element in list_object if condition(element)]
Arguments
- condition -
function
, if condition function not satisfy for list element then it will be excluded. (required)
Keyword arguments
- cast -
data_type
, cast the elements of list.
Example
>>> list_obj = [1, 2, 3, 4, 5, 6]
>>> list_obj.filter(lambda x: x > 3)
[4, 5, 6]
>>> list_obj.filter(lambda x: x <= 3, cast=float)
[1.0. 2.0. 3.0]
compact()
Exclude None
or empty list
/ dict
/ set
/ tuple
from list.
Example
>>> list_obj = [1, 2, 3, None, [], {}]
>>> list_obj.compact()
[1, 2, 3]
transform(element_function
)
Transform the elements of list.
Arguments
- element_function -
function
, list elements are passed to given function. (required)
Example
>>> list_obj = [1, 2, 3, 4]
>>> list_obj.transform(lambda x: x ** 2)
[1, 4, 9, 16]
>>> list_obj = [*enumerate(list_object)]
>>> list_obj.transform(lambda x, y: x + y)
[1, 3, 5, 7]
count_all()
Count occurences of elements in list.
note - elements should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Example
>>> list_obj = [1, 2, 2, 3, 3, 4]
>>> list_obj.count_all()
{1: 1, 2: 2, 3: 2, 4: 1}
intersection(target_list
)
Give list of common elements.
note - elements should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Example
>>> list_obj = [1, 2, 2, 3, 3, 4]
>>> list_obj.intersection([2, 4, 5, 6, 7])
[2, 4]
flatten()
Convert N-Dimention list into single flat 1-D list.
Example
>>> list_obj = [1, [2, 2], 3, [[[3]]], 4]
>>> list_obj.flatten()
[1, 2, 2, 3, 3, 4]
get_index(index
, default_value=None
)
Fetch given index from list, if given index is out of range then return default_value
.
Arguments
- index -
int
, (required) - default_value - any data type, (optional, default: None)
Example
>>> list_obj = [1, 2, 3, 4, 5]
>>> list_obj.get_index(2)
3
>>> list_obj.get_index(10, 'N/A')
N/A
execute(execute_function
)
Execute function using elements of list.
Arguments
- execute_function -
function
, it can accept any number of arguments (required)
Example
>>> list_obj = [1, 2, 3, 4, 5]
>>> new_list = []
>>> list_obj.execute(lambda x: new_list.append(x * 3))
>>> new_list
[3, 6, 9, 12, 15]
>>> list_obj.execute(lambda x: print(x))
1
2
3
4
5
Dict
filter(condition
, **kwargs
)
Filter dict based on keys and values. Arguments
- condition -
function
,function
must accept 2 parameters, 1st parameter for key and 2nd parameter for value. (required)
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> dict_obj.filter(lambda key, value: value > 1)
{'b': 2, 'c': 3}
transform(key_function=None
, value_function=None
)
Transform dict keys and values according to given functions. Arguments
- key_function -
function
,function
can accept any number of arguments. (optional, default:None
) - value_function -
function
,function
can accept any number of arguments. (optional, default:None
)
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> dict_obj.transform(key_function=lambda x: 'a' + x)
{'aa': 1, 'ab': 2, 'ac': 3}
>>> dict_obj.transform(value_function=lambda x: x ** 2)
{'a': 1, 'b': 4, 'c': 9}
>>> dict_obj = {'a': (1, 2), 'b': (3, 4), 'c': (5, 6)}
>>> dict_obj.transform(key_function=lambda key: key + '_sum', value_function=lambda x, y: x + y)
{'a_sum': 3, 'b_sum': 7, 'c_sum': 11}
keys_list()
Return keys of dict as list.
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> dict_obj.keys_list()
['a', 'b', 'c']
values_list()
Return values of dict as list.
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> dict_obj.values_list()
[1, 2, 3]
remove(key_function=None
, value_function=None
, operator='and'
)
Remove dict keys based on given key_function
and value_fucntion
and operation between key_funciton
and value_function
which is by default and
operation.
Arguments
- key_function -
function
,function
can accept any number of arguments. (optional, default:None
) - value_function -
function
,function
can accept any number of arguments. (optional, default:None
) - operator -
str
, accepted string - ['and', 'or'], (optional, default='and')
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> dict_obj.remove(key_function=lambda x: x == 'b')
{'a': 1, 'c': 3}
>>> dict_object.remove(key_function=lambda key: key in ['b', 'c'], value_fucntion=lambda value: value % 2 == 1)
{'a': 1, 'b': 2}
>>> dict_object.remove(key_function=lambda key: key in ['b', 'c'], value_fucntion=lambda value: value % 2 == 1, operator='or')
{'a': 1}
reverse(keep_duplicate=False
)
Reverse the dict, set values as keys and keys as values. If keep_duplicate
is set true then it will merge duplicate value as list.
note - dict values should be hashable datatype i.e elements must be str, int, float, tuple, bool only.
Arguments
- keep_duplicate -
bool
, (optional, default:False
)
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3, 'd': 3}
>>> dict_obj.reverse()
{1: 'a', 2: 'b', 3: 'd'}
>>> dict_obj.reverse(keep_duplicate=True)
{1: 'a', 2: 'b', 3: ['c', 'd']}
deep_merge(target_dict
, max_depth=None
)
It will merge given target_dict
with given max_depth
. If max_depth
is None
then it go down to maximum depth for merging.
Arguments
- target_dict -
dict
, (required) - max_depth -
int
,int
greater than 0, (optional, default:None
)
Example
>>> dict_obj = {'a': 1, 'b': {'c': {'d': 3}, 'e': 2}}
>>> dict_obj.deep_merge({'g': 4, 'b': {'c': {'d': 5}}})
{'a': 1, 'b': {'c': {'d': [3, 5]}, 'e': 2}, 'g': 4}
>>> dict_obj.deep_merge({'g': 4, 'b': {'c': {'d': 5}}}, max_depth=1)
{'a': 1, 'b': [{'c': {'d': 3}, 'e': 2}, {'c': {'d': 5}}], 'g': 4}
execute(execute_function
)
Execute function using keys and values of dict.
Arguments
- execute_function -
function
, it must accept 2 arguments key and value, (required)
Example
>>> dict_obj = {'a': 1, 'b': 2, 'c': 3}
>>> new_list = []
>>> dict_obj.execute(lambda x, y: new_list.append(y))
>>> new_list
[1, 2, 3]
>>> dict_obj.execute(lambda x, y: print(x))
1
2
3
Set
to_list()
Convert set to list.
Tuple
to_list()
Convert tuple to list.
Int & Float
is_positive(**kwargs
)
Return True
if number is positive else return False
. If on_true
or on_false
keyword arguments are present then it will return keyword argument value respectively.
Keyword arguments
- on_true - any data type, (optional, default:
True
) - on_false - any data type, (optional, default:
False
)
Example
>>> num = 1
>>> num.is_positive()
True
>>> num.is_positive(on_true='Yes')
Yes
>>> num = -9
>>> num.is_positive(on_false='No')
No
>>> num.is_positive(on_true='Yes')
False
is_negetive(**kwargs
)
Return True
if number is negetive else return False
. If on_true
or on_false
keyword arguments are present then it will return keyword argument value respectively.
Keyword arguments
- on_true - any data type, (optional, default:
True
) - on_false - any data type, (optional, default:
False
)
Example
>>> num = 1
>>> num.is_negetive()
False
>>> num.is_negetive(on_true='Yes')
False
>>> num = -9
>>> num.is_negetive(on_false='No')
True
>>> num.is_negetive(on_true='Yes', on_false='No')
Yes
is_zero(**kwargs
)
Return True
if number is equal to zero else return False
. If on_true
or on_false
keyword arguments are present then it will return keyword argument value respectively.
Keyword arguments
- on_true - any data type, (optional, default:
True
) - on_false - any data type, (optional, default:
False
)
Example
>>> num = 1
>>> num.is_zero()
False
>>> num.is_zero(on_true='Yes')
False
>>> num = 0
>>> num.is_zero(on_false='No')
True
>>> num.is_zero(on_true='Yes', on_false='No')
Yes
safe_divide(denominator
, default=math.nan
)
It ensure if denominator
is zero then return default
value otherwise return divided value.
Arguments
- denominator -
int
/float
, (required) - default - any data type, (optional, default:
math.nan
)
Example
>>> a = 4
>>> a.safe_divide(2)
2.0
>>> a.safe_divide(0)
nan
>>> a.safe_divide(0, 0)
0
>>> a.safe_divde(0, 'N/A')
N/A
Others
This is common to all data types -
is_none(**kwargs
)
Return True
if object is None
else return False
. If on_true
or on_false
keyword arguments are present then it will return keyword argument value respectively.
Keyword arguments
- on_true - any data type, (optional, default:
True
) - on_false - any data type, (optional, default:
False
)
Example
>>> a, b, c, d = 2, 'hello', [], None
>>> a.is_none()
False
>>> a.is_none(on_false=a + 1)
3
>>> b.is_none(on_true="Yes")
False
>>> d.is_none()
True
is_not_none(**kwargs
)
Return True
if object is not None
else return False
. If on_true
or on_false
keyword arguments are present then it will return keyword argument value respectively.
Keyword arguments
- on_true - any data type, (optional, default:
True
) - on_false - any data type, (optional, default:
False
)
Example
>>> a, b, c, d = 2, 'hello', [], None
>>> a.is_not_none()
True
>>> a.is_not_none(on_false=a + 1)
True
>>> b.is_not_none(on_true="Yes")
Yes
>>> d.is_not_none()
False
Functions toolbelt
is_type(obj
, target_obj
)
Return True
if object matches with given types else return False
.
Arguments
- obj - any data type / object
- target_obj - string or list of string
Example
>>> a, b, c = 2, 'hello', ['world']
>>> is_type(a, 'int')
True
>>> is_type(b, 'int')
False
>>> is_type(c, ['list', 'set'])
True
>>> is_type(a, ['str', 'list'])
False
handle_division(numerator
, denominator
, default=0
)
Return division value if denominator
is not zero otherwise return default
value.
Arguments
- numerator - int / float
- denominator - int / float
- default - int / float, (optional, default:
0
)
Example
>>> handle_division(1, 2)
0.5
>>> handle_division(1.5, None)
0
>>> handle_division(2, 0, 2)
2
>>> handle_division(2, 0)
0
multithread_pool(funcs
, max_threads=5
)
This method execute given funcs
dict of functions in multi-thread. Each thread execute one function.
Arguments
- funcs - dict
- max_threads - int, (optional, default:
5
)
Example
funcs
argument dict keys are function and value is either list of length 2 or None
.
List 1st element should be list of positional arguments.
List 2nd element should be dict of keyword arguments.
If key is None
then it means function do not take any positional arguments and keyword
arguments.
Structure -
{test_func1: [[1, 2, 'Hello', [1,2,333]], {'arg_key': 12}],
test_func2: [[1, 2, 'Hello', [1,2,333]],
test_func3: [None, {'arg_key': 123}],}
test_func: None}
cache_db(key
, value=None
)
This function use to implement temporary small pickle database which is a json storing file.
This is not persistant database so it will be cleared out if you deploy new code / delete the pickle file.
So make sure to use in such cases where you need data to store for temporary purpose.
This function accept two parameters, first is key
and second is value
.
If only key
parameter is provided then it will get data from database, if key
not found return False
, otherwise return key's value.
If you pass both key
and value
parameters then it will set key value in database.
Arguments
- key - str
- value - any basic datatype accepted by json format, (optional, default:
None
)
Example
>>> cache_db(key='hello')
False
>>> cache_db(key='hello', value='world')
True
>>> cache_db(key='hello')
World
none_safe(object
, default=None
)
If given object
is not None
then return object otherwise return default
value.
Arguments
- object - any data type / object
- default - any data type / object, (optional, default:
None
)
Example
>>> none_safe(5)
5
>>> none_safe('hello', 'world')
hello
>>> none_safe(None, 'world')
world
iter_safe(object
, default=[]
)
If given object
is not None
and object is instance of iterable then return object otherwise return default
value.
Arguments
- object - any data type / object
- default - any data type / object, (optional, default:
[]
)
Example
>>> iter_safe(5)
[]
>>> iter_safe(['hello'], 'world')
['hello']
>>> iter_safe([], 'world')
[]
>>> iter_safe('hello')
'hello'
>>> iter_safe(1.4, ['hello', 'world'])
['hello', 'world']
empty_safe(object
, default=None
)
If given object
is empty in sense of iterable then return default
value else return object
.
Arguments
- object - any data type / object
- default - any data type / object, (optional, default:
None
)
Example
>>> empty_safe(5)
5
>>> empty_safe(['hello'], 'world')
['hello']
>>> empty_safe([], 'world')
'world'
>>> empty_safe('hello')
'hello'
>>> empty_safe(1.4, ['hello', 'world'])
1.4
MIT License
Copyright (c) 2021 Soami Charan
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for py_toolbelt-0.2.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fea6c143585d31589b2ed4a949c6bd4734696d732359a99f0037264063ebc758 |
|
MD5 | b700db3ffa61e32b3f436bfffa7be9b2 |
|
BLAKE2b-256 | 651a56528621cc9a3c91f6808c7b42e44e5305434369872c69a2d614eab163f8 |