Skip to main content

Create OpenAI-compatible function schemas from python functions

Project description

Py2OpenAI

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

Read the documentation!

OpenAI Function Schema Generator

Convert Python functions to OpenAI-compatible function schemas automatically.

Installation

pip install openai-function-schema  # not yet published

Basic Usage

from openai_function_schema import create_schema
from typing import Literal

def get_weather(
    location: str,
    unit: Literal["C", "F"] = "C",
    detailed: bool = False,
) -> dict[str, str | float]:
    """Get the weather for a location.

    Args:
        location: City or address to get weather for
        unit: Temperature unit (Celsius or Fahrenheit)
        detailed: Include extended forecast
    """
    return {"temp": 22.5, "conditions": "sunny"}

# Create schema
schema = create_schema(get_weather)

# Use with OpenAI
from openai import OpenAI

client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "What's the weather in London?"}],
    functions=[schema.model_dump_openai()],
    function_call="auto"
)

Supported Types

Basic Types

def func(
    text: str,              # -> "type": "string"
    number: int,            # -> "type": "integer"
    amount: float,          # -> "type": "number"
    enabled: bool,          # -> "type": "boolean"
    anything: Any,          # -> "type": "string"
) -> None: ...

Container Types

def func(
    items: list[str],                    # -> "type": "array", "items": {"type": "string"}
    numbers: set[int],                   # -> same as list
    mapping: dict[str, Any],            # -> "type": "object", "additionalProperties": true
    nested: list[dict[str, int]],       # -> nested array/object types
    sequence: Sequence[str],            # -> "type": "array"
    collection: Collection[int],        # -> "type": "array"
) -> None: ...

Enums and Literals

class Color(Enum):
    RED = "red"
    BLUE = "blue"

def func(
    color: Color,                       # -> "type": "string", "enum": ["red", "blue"]
    mode: Literal["fast", "slow"],      # -> "type": "string", "enum": ["fast", "slow"]
) -> None: ...

Optional and Union Types

def func(
    opt1: str | None,                   # -> "type": "string"
    opt2: int | None,                   # -> "type": "integer"
    union: str | int,                   # -> "type": "string" (first type)
) -> None: ...

Custom Types

@dataclass
class User:
    name: str
    age: int

def func(
    user: User,                         # -> "type": "object"
    data: JsonDict,                     # -> "type": "object"
) -> None: ...

Type Aliases

JsonValue = dict[str, Any] | list[Any] | str | int | float | bool | None
JsonDict = dict[str, JsonValue]

def func(
    data: JsonDict,                     # -> "type": "object"
    values: list[JsonValue],            # -> "type": "array"
) -> None: ...

Recursive Types

def func(
    tree: dict[str, "dict[str, Any] | str"],  # -> "type": "object"
    nested: dict[str, list["dict[str, Any]"]], # -> "type": "object"
) -> None: ...

Generated Schema Example

{
    "name": "get_weather",
    "description": "Get the weather for a location.",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "City or address to get weather for"
            },
            "unit": {
                "type": "string",
                "enum": ["C", "F"],
                "description": "Temperature unit (Celsius or Fahrenheit)",
                "default": "C"
            },
            "detailed": {
                "type": "boolean",
                "description": "Include extended forecast",
                "default": false
            }
        },
        "required": ["location"]
    }
}

Schema Generators

Module Schemas

You can generate schemas for all public functions in a module using create_schemas_from_module:

from py2openai import create_schemas_from_module
import math

# Generate schemas for all public functions
schemas = create_schemas_from_module(math)

# Generate schemas for specific functions only
schemas = create_schemas_from_module(math, include_functions=['sin', 'cos'])

# Import module by string name
schemas = create_schemas_from_module('math')

Class Schemas

Generate schemas for all public methods in a class using create_schemas_from_class:

from py2openai import create_schemas_from_class

class Calculator:
    def add(self, x: int, y: int) -> int:
        """Add two numbers.

        Args:
            x: First number
            y: Second number

        Returns:
            Sum of x and y
        """
        return x + y

    @classmethod
    def multiply(cls, x: int, y: int) -> int:
        """Multiply two numbers.

        Args:
            x: First number
            y: Second number

        Returns:
            Product of x and y
        """
        return x * y

    @staticmethod
    def divide(x: float, y: float) -> float:
        """Divide two numbers.

        Args:
            x: Numerator
            y: Denominator

        Returns:
            Result of x divided by y
        """
        return x / y

# Generate schemas for all public methods
schemas = create_schemas_from_class(Calculator)

# Access individual method schemas
add_schema = schemas['Calculator.add']
multiply_schema = schemas['Calculator.multiply']
divide_schema = schemas['Calculator.divide']

The schema generators support:

  • Regular instance methods
  • Class methods
  • Static methods
  • Async methods
  • Property methods
  • All supported type annotations
  • Method docstrings for descriptions
  • Default values
  • Return type hints

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py2openai-0.9.0.tar.gz (20.1 kB view details)

Uploaded Source

Built Distribution

py2openai-0.9.0-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file py2openai-0.9.0.tar.gz.

File metadata

  • Download URL: py2openai-0.9.0.tar.gz
  • Upload date:
  • Size: 20.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.2

File hashes

Hashes for py2openai-0.9.0.tar.gz
Algorithm Hash digest
SHA256 2a0b8eead8a63e290835091a0a131d25c209354a2dd24d1967769c056ca9c1e3
MD5 6b1735e8c7ec7be822fb794d3c006961
BLAKE2b-256 355da399727ac962cf65351659bbdf32d32d67cb3050ab7351c0252247a775c6

See more details on using hashes here.

File details

Details for the file py2openai-0.9.0-py3-none-any.whl.

File metadata

File hashes

Hashes for py2openai-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2a4613d581791b8892a6b1c650d88d5e5e6f6d6aa3b090663ad7028340911964
MD5 660b12e56a59355d28db158b9df24333
BLAKE2b-256 fe3579105dcf84d5155a67e8eb23f293dd1b4872a47181d7cf5152822721f9fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page