Skip to main content

Create OpenAI-compatible function schemas from python functions

Project description

Py2OpenAI

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

Read the documentation!

OpenAI Function Schema Generator

Convert Python functions to OpenAI-compatible function schemas automatically.

Installation

pip install openai-function-schema  # not yet published

Basic Usage

from openai_function_schema import create_schema
from typing import Literal

def get_weather(
    location: str,
    unit: Literal["C", "F"] = "C",
    detailed: bool = False,
) -> dict[str, str | float]:
    """Get the weather for a location.

    Args:
        location: City or address to get weather for
        unit: Temperature unit (Celsius or Fahrenheit)
        detailed: Include extended forecast
    """
    return {"temp": 22.5, "conditions": "sunny"}

# Create schema
schema = create_schema(get_weather)

# Use with OpenAI
from openai import OpenAI

client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "What's the weather in London?"}],
    functions=[schema.model_dump_openai()],
    function_call="auto"
)

Supported Types

Basic Types

def func(
    text: str,              # -> "type": "string"
    number: int,            # -> "type": "integer"
    amount: float,          # -> "type": "number"
    enabled: bool,          # -> "type": "boolean"
    anything: Any,          # -> "type": "string"
) -> None: ...

Container Types

def func(
    items: list[str],                    # -> "type": "array", "items": {"type": "string"}
    numbers: set[int],                   # -> same as list
    mapping: dict[str, Any],            # -> "type": "object", "additionalProperties": true
    nested: list[dict[str, int]],       # -> nested array/object types
    sequence: Sequence[str],            # -> "type": "array"
    collection: Collection[int],        # -> "type": "array"
) -> None: ...

Enums and Literals

class Color(Enum):
    RED = "red"
    BLUE = "blue"

def func(
    color: Color,                       # -> "type": "string", "enum": ["red", "blue"]
    mode: Literal["fast", "slow"],      # -> "type": "string", "enum": ["fast", "slow"]
) -> None: ...

Optional and Union Types

def func(
    opt1: str | None,                   # -> "type": "string"
    opt2: int | None,                   # -> "type": "integer"
    union: str | int,                   # -> "type": "string" (first type)
) -> None: ...

Custom Types

@dataclass
class User:
    name: str
    age: int

def func(
    user: User,                         # -> "type": "object"
    data: JsonDict,                     # -> "type": "object"
) -> None: ...

Type Aliases

JsonValue = dict[str, Any] | list[Any] | str | int | float | bool | None
JsonDict = dict[str, JsonValue]

def func(
    data: JsonDict,                     # -> "type": "object"
    values: list[JsonValue],            # -> "type": "array"
) -> None: ...

Recursive Types

def func(
    tree: dict[str, "dict[str, Any] | str"],  # -> "type": "object"
    nested: dict[str, list["dict[str, Any]"]], # -> "type": "object"
) -> None: ...

Generated Schema Example

{
    "name": "get_weather",
    "description": "Get the weather for a location.",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "City or address to get weather for"
            },
            "unit": {
                "type": "string",
                "enum": ["C", "F"],
                "description": "Temperature unit (Celsius or Fahrenheit)",
                "default": "C"
            },
            "detailed": {
                "type": "boolean",
                "description": "Include extended forecast",
                "default": false
            }
        },
        "required": ["location"]
    }
}

Schema Generators

Module Schemas

You can generate schemas for all public functions in a module using create_schemas_from_module:

from py2openai import create_schemas_from_module
import math

# Generate schemas for all public functions
schemas = create_schemas_from_module(math)

# Generate schemas for specific functions only
schemas = create_schemas_from_module(math, include_functions=['sin', 'cos'])

# Import module by string name
schemas = create_schemas_from_module('math')

Class Schemas

Generate schemas for all public methods in a class using create_schemas_from_class:

from py2openai import create_schemas_from_class

class Calculator:
    def add(self, x: int, y: int) -> int:
        """Add two numbers.

        Args:
            x: First number
            y: Second number

        Returns:
            Sum of x and y
        """
        return x + y

    @classmethod
    def multiply(cls, x: int, y: int) -> int:
        """Multiply two numbers.

        Args:
            x: First number
            y: Second number

        Returns:
            Product of x and y
        """
        return x * y

    @staticmethod
    def divide(x: float, y: float) -> float:
        """Divide two numbers.

        Args:
            x: Numerator
            y: Denominator

        Returns:
            Result of x divided by y
        """
        return x / y

# Generate schemas for all public methods
schemas = create_schemas_from_class(Calculator)

# Access individual method schemas
add_schema = schemas['Calculator.add']
multiply_schema = schemas['Calculator.multiply']
divide_schema = schemas['Calculator.divide']

The schema generators support:

  • Regular instance methods
  • Class methods
  • Static methods
  • Async methods
  • Property methods
  • All supported type annotations
  • Method docstrings for descriptions
  • Default values
  • Return type hints

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py2openai-0.9.1.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

py2openai-0.9.1-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file py2openai-0.9.1.tar.gz.

File metadata

  • Download URL: py2openai-0.9.1.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.2

File hashes

Hashes for py2openai-0.9.1.tar.gz
Algorithm Hash digest
SHA256 d3b6d6534e58bb4a7c7025164ce0bbed353f13f2d195a0f3cc38e5a40c40e978
MD5 84a51ae137aeca76229de958bebfee94
BLAKE2b-256 b5dddd8f64690a1a472c68a883316d0f23e20a40beae9fa142fd610119725e8d

See more details on using hashes here.

File details

Details for the file py2openai-0.9.1-py3-none-any.whl.

File metadata

File hashes

Hashes for py2openai-0.9.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8c743aa3740ece9764bca3365b7ef3d47f3a93d5dca9f2f18ef99f5180c8700f
MD5 dbedbf59898d75fbe828252ffbceadee
BLAKE2b-256 d6fd8c7a50829160a5a93e3d9e92eacfd56daf8b0b812c126a01a4f3740e0284

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page