Skip to main content

A Python implementation of the SOM training functionality of FlowSOM

Project description

pyFlowSOM

CI / CD CI Coverage Status
Package PyPI - Version PyPI - Downloads PyPI - Python Version
Meta PyPI - License

Python runner for the FlowSOM library.

Basic usage:

import numpy as np
import pandas as pd
from pyFlowSOM import map_data_to_nodes, som

# generate example input data, rows are observations (e.g. cells), columns are features (e.g. proteins)
df = pd.DataFrame(np.random.rand(500, 16))

# alternatively, specify path to your own input data
df = pd.read_csv('path/to/som/input.csv')

example_som_input_arr = df.to_numpy()

# train the SOM
node_output = som(example_som_input_arr, xdim=10, ydim=10, rlen=10)

# use trained SOM to assign clusters to each observation in your data
clusters, dists = map_data_to_nodes(node_output, example_som_input_arr)

To put the data back into dataframes:

eno = pd.DataFrame(data=node_output, columns=df.columns)
eco = pd.DataFrame(data=clusters, columns=["cluster"])

To export to csv:

eno.to_csv('examples/example_node_output.csv', index=False)
eco.to_csv('examples/example_clusters_output.csv', index=False)

To plot the output as a heatmap:

import seaborn as sns

# Append results to the input data
df['cluster'] = clusters

# Find mean of each cluster
df_mean = df.groupby(['cluster']).mean()

# Make heatmap
sns_plot = sns.clustermap(df_mean, z_score=1, cmap="vlag", center=0, yticklabels=True)
sns_plot.figure.savefig(f"example_cluster_heatmap.png")

Develop

The C code (pyFlowSOM/flowsom.c) is wrapped using Cython (pyFlowSOM/cyFlowSOM.cyx).

Tests do an exact comparison to cluster id ground truth and an approximate comparison to node values only because of floating point differences. Randomness works in tandem to the seed flag to the som function.

To run the tests, use the following command:

pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFlowSOM-0.1.16.tar.gz (184.1 kB view details)

Uploaded Source

Built Distributions

pyFlowSOM-0.1.16-cp312-cp312-win_arm64.whl (80.6 kB view details)

Uploaded CPython 3.12 Windows ARM64

pyFlowSOM-0.1.16-cp312-cp312-win_amd64.whl (97.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (754.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (737.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

pyFlowSOM-0.1.16-cp312-cp312-macosx_11_0_arm64.whl (259.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_universal2.whl (361.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyFlowSOM-0.1.16-cp311-cp311-win_arm64.whl (82.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

pyFlowSOM-0.1.16-cp311-cp311-win_amd64.whl (98.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (761.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (746.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

pyFlowSOM-0.1.16-cp311-cp311-macosx_11_0_arm64.whl (259.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_x86_64.whl (266.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_universal2.whl (360.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyFlowSOM-0.1.16-cp310-cp310-win_arm64.whl (82.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

pyFlowSOM-0.1.16-cp310-cp310-win_amd64.whl (98.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (714.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (701.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

pyFlowSOM-0.1.16-cp310-cp310-macosx_11_0_arm64.whl (259.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_x86_64.whl (266.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_universal2.whl (360.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyFlowSOM-0.1.16-cp39-cp39-win_amd64.whl (98.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (716.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (704.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

pyFlowSOM-0.1.16-cp39-cp39-macosx_11_0_arm64.whl (259.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl (267.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_universal2.whl (362.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pyFlowSOM-0.1.16.tar.gz.

File metadata

  • Download URL: pyFlowSOM-0.1.16.tar.gz
  • Upload date:
  • Size: 184.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pyFlowSOM-0.1.16.tar.gz
Algorithm Hash digest
SHA256 b9460cf23d2e5279bf7a8f4da706a04956b00a81c8378a73ea0f887cba12ee29
MD5 10d05d6b73d2865cf522ddf50e39988f
BLAKE2b-256 68079a523a865e9624a7a203cd32c31537ba8b1b5355f60f63a8bc67efd8b1ed

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 855040a61bd8a614adc33905018cabc058394f37e16d8c1b96e4b3be61cb818e
MD5 d2129b276d7d7ee773545b9828b698c0
BLAKE2b-256 3b04f8ece84c44e005d7bbfbb507f7bd4f5190d3c47fe97dc5faa007b10fcc5d

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ef0b1249ff52173ce93fa857f36e1e660cf9b543c43250e90e94e934df48290c
MD5 c25fcb618dfadcb161826d919859ae0f
BLAKE2b-256 8a583a129051558b73b41555842a4ae9ab14ae8b1c85c3acb335c1022e264457

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7982165e477d5e9ec44e7fdf79908d2c027713402b220154602851045968c5d4
MD5 99804a7ab49e6973a0695f819bcbc45d
BLAKE2b-256 15acad17cfaa6226466628a3c2dffa6f1af1517dace996beb8c137b881a1412f

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b98924e0e04fa4bfe506d95dc221e6713caa138ba347975da8efcc01264a9fac
MD5 56cfc90d910bf9c1bed866ea16fd1466
BLAKE2b-256 ff8890ce5100f2f9db1581b26055ffe9f34744a07e569722408d2d8310a36127

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 492b3d65d28e753dcd34341f5d1e8a4aeaade4679773a3dee726e03cb01ddd44
MD5 a422ee142a5d6bfc3bba8a9bd3830b5f
BLAKE2b-256 929096561fc924b7617eda6a9368e334a80ca300ee1b7b69f22cf4ad2aca27c9

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b299c53782aed1d6d2550ea0044d3eb49f10d279b41d3ec752df18f62088933
MD5 18f1ec1faa323ba3ab2afd0c1458d78a
BLAKE2b-256 530474bff33f08cdc288034e0b57c7188a43bc5fd4eb3fefac91f6bb597dccd1

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dcb12323a97ef4e732892d0aa0bf119317185bacf9d381601e0da3919125202c
MD5 b380f243db98c2c2bed7467a14bd6ab6
BLAKE2b-256 a60d51ebea970bb316c1cea3950bfd1a3b9a7d16ba1bfb2aaf77aca6123fa8a8

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 2ad69e46df46a49e9aa263653583cd7efcd4e554b0322cd6c9ceef72987c2968
MD5 3f691f9ec66c1713f203312bb0906285
BLAKE2b-256 833012b2d7622cfc255d806962fc21966cd56a291dab6efc964bcbe9b52836af

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8e05d37409a527996f9becf431ad452a4ae7dc4f954221cafe0dab95b40927d8
MD5 ddc5e31f27c400e85129a1e89aea468a
BLAKE2b-256 895c774f99248e95c41a2f4075cb647c0fbe95682e29adbc8356b5e993cb1d78

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cf250786ab5a1397f9fc877efdf0f4391a7b4fd2b7e602498e9bd37dd01ccf25
MD5 70590f3302a57006996ed14fc3752b97
BLAKE2b-256 76d21389339f19e4b763547b127842f3ffb34cca3a778640efca7b354842adce

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 731d472c16a6baca42d46d1497b4ba25db00022685f4627c47db5c55cbaebb9b
MD5 eab24dec6421d614b9a344e44194a224
BLAKE2b-256 219e00a966dc7754873b6b59ceb1b05139a5e00760a8851c51d2f7073eec8747

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4b1e4fc44eef58956ba869cba6676f39b505285243549f554d2f996142362ec
MD5 ccdf74521fc532ab00ae6d2661f26a40
BLAKE2b-256 fefa46d20de6661264c2fe49f3c01351d17c28a4899d08cc69af9393907652f3

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c756292b41ded20d48d4e158f7d6d50a3c303209324380a33ca604db64957d3
MD5 65ede30adfea7fc7a676a0df5e80f8ff
BLAKE2b-256 bb36f9f23912d7fc9960062189db344fcd284e3afb5de3ae407ea4652f839729

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c219fcf4674fa1b3fb066815587bb016e1f3552f69e9f9e4643df469259e04e5
MD5 e23ab54b18b16f526f1c32811f3cc133
BLAKE2b-256 4cea389625944a09ce936b769e5a7a67127455b7770f266dc0503333a7c5be17

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 46b4cbcece8df231cab3dfb65733b684077b0163b1aa06ab811e9bf5e6c2d61d
MD5 a7bdb56edfab68fd6b2a338094d635d5
BLAKE2b-256 8cbed74233db1b2a326151a8b093e11f0a42afdec246bee96c9d9acfb391c012

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 72d62e92ab8fe348885853b3396ce556835ae8853c602d0d882a5ae28a758846
MD5 4a4c5fda0d399ac02e14335535e4b8b9
BLAKE2b-256 b95a617ea7bf2678a3bd5029ae736699e2ae7e26260ac8cf1d125748269e7221

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0458adaaf49a6f85bb658b678db381e37c882735a588b14b871d076fe13fc885
MD5 da4f724c6954480155614e6385757872
BLAKE2b-256 520000034354cc853baf80bfa6ab9678e1fcc9d710e033fd1deb2f4c9b3dfb13

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f8b1e4d26b67ec3d4d7e3236965f123832b105a505229938dfc3ba38d4c9966e
MD5 31d4ef4ebcb2c577161f823746c70206
BLAKE2b-256 3c5f2bb8e62e7d3eb66224b634d89ff5007908b5d70a377cbdb4794cc43be25a

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2df4ce9dd8fba1280d265ebe83934569e48c1459766fc2059d2c08610db6799
MD5 6fdc4d8c99ebdf1b5b767029b7f0c277
BLAKE2b-256 0117016470a879a2b49f7d79100344f6d0202c539807c016e604257162d673bf

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee7f38465ebca4033ff2078a20d39bba6b4e592037984400018edb8cc03e2dc0
MD5 59d295ac37805e6c78a1dae35267a21d
BLAKE2b-256 db004c0ac7d56efd5338462b9d889e31a5e13903dd656f78aea3eb0c49e9a494

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e1568a2d2d9e8d059e80cc9dd59e9622240fa6142046282d286a52724cfde7f9
MD5 15a36fdb34c30e7dc0185853d55cf836
BLAKE2b-256 9141d4ebf14e5c60868d9f7a65ed9ed8041a3469680313629318952050d73598

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5b3b812d2edf280c39e3c3820054b700c05c212dd6a17f274ccefc219a79d98
MD5 16a0fc140e1cf6835041da9bf9101bf9
BLAKE2b-256 500f2f3f603e8b5ec2f6961f5780da1bca1c05c8ef6d49e81e71ccbf35130e3d

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e87818b9f1b60e87862d779b349068a5851491a9aa4eb5c2c4ce538f056a6e0
MD5 fbbe86ce1e5351517e6705391c06bfce
BLAKE2b-256 9174c4de9a3d88dc29f51c4fefde71d4adf17546cb8859f4a61e5ab8cdd941f7

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 560501be05d4b90fd00f754aa4e455ed24f7dc62ec19af9296b2aa1f5a6d43f4
MD5 bc631309c3c117ed74ba81af30471c27
BLAKE2b-256 80727dafd70a57449956da5b4530c72a1f6c96413ce13b8d4651fddf30b331ca

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79a63e9490a443c2aed0e4285149391a745dcb921c9aeb5f68f6e5d54b163e08
MD5 1b0f451961ab1734f71c424dca081656
BLAKE2b-256 872a5428f1359bcba2cc7e2285725ecf359276cda1481c8f1b2145d0d05ccebc

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce374ceea8df594a28917ff250d165484bda6bed720105397189730da238b9b4
MD5 d6a5befd77802a0ef9d107de166282f7
BLAKE2b-256 d54a5b93daaea2a40585cf350cf7ac913062193146f41482a6d66e4ac34ce149

See more details on using hashes here.

File details

Details for the file pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyFlowSOM-0.1.16-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 62bc7034e576f5e1de16f42187183204d753a61145309a86545b10889b5a9578
MD5 27006d049aad3fc027441572a50c6628
BLAKE2b-256 b7f8f473d51f4a91acf59c1e33233653f97402bc2707e0a239b4d0e96d85cd1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page