Skip to main content

A python package for Paradigm Free Mapping (3dPFM and 3dMEPFM).

Project description

pySPFM

The Python version of AFNI's 3dPFM and 3dMEPFM with some extra features like the addition of a spatial regularization similar to the one used by Total Activation.

Latest Version PyPI - Python Version DOI License CircleCI Documentation Status codecov Code style: black pre-commit

References

  • Caballero-Gaudes, C., Moia, S., Panwar, P., Bandettini, P. A., & Gonzalez-Castillo, J. (2019). A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping. NeuroImage, 202, 116081–116081. https://doi.org/10.1016/j.neuroimage.2019.116081
  • Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., & Gowland, P. A. (2013). Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses. Human Brain Mapping. https://doi.org/10.1002/hbm.21452
  • Gaudes, C. C., Ville, D. V. D., Petridou, N., Lazeyras, F., & Gowland, P. (2011). Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data. Wavelets and Sparsity XIV, 8138, 81381K. https://doi.org/10.1117/12.893920
  • Karahanoǧlu, F. I., Caballero-Gaudes, C., Lazeyras, F., & Van De Ville, D. (2013). Total activation: FMRI deconvolution through spatio-temporal regularization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.01.067
  • Uruñuela, E., Bolton, T. A. W., Van De Ville, D., & Caballero-Gaudes, C. (2021). Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work. ArXiv:2107.12026 [q-Bio]. http://arxiv.org/abs/2107.12026

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspfm-0.0.1b23.tar.gz (64.1 kB view details)

Uploaded Source

Built Distribution

pyspfm-0.0.1b23-py3-none-any.whl (63.7 kB view details)

Uploaded Python 3

File details

Details for the file pyspfm-0.0.1b23.tar.gz.

File metadata

  • Download URL: pyspfm-0.0.1b23.tar.gz
  • Upload date:
  • Size: 64.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b23.tar.gz
Algorithm Hash digest
SHA256 ae811a7d45527c53385dd964c9159351a0195917ac6106f0ba6d1c4b1206bc45
MD5 69fec6b489d1e4ceb6d4b759e4c17f6f
BLAKE2b-256 634d92af3fd9d9126ed1b221bca260b6fbb20fec6dbedc3539c7cbaecd81dca6

See more details on using hashes here.

File details

Details for the file pyspfm-0.0.1b23-py3-none-any.whl.

File metadata

  • Download URL: pyspfm-0.0.1b23-py3-none-any.whl
  • Upload date:
  • Size: 63.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b23-py3-none-any.whl
Algorithm Hash digest
SHA256 e622ffe170deac07afba7fe249d7d8941d45fb35e361d32bf04b26c7cd263cc8
MD5 359d55cbf166a6c83c9fece2d3144c49
BLAKE2b-256 426649fb65f20ad932ea154ecfb05a3106b8c6938b602373b9f4510f8ba8bbf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page