Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-19.8-cp37-cp37m-macosx_10_10_x86_64.whl (294.5 kB view details)

Uploaded CPython 3.7m macOS 10.10+ x86-64

pyats.datastructures-19.8-cp36-cp36m-macosx_10_10_x86_64.whl (301.1 kB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

pyats.datastructures-19.8-cp35-cp35m-manylinux1_i686.whl (975.2 kB view details)

Uploaded CPython 3.5m

pyats.datastructures-19.8-cp35-cp35m-macosx_10_10_x86_64.whl (289.6 kB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

pyats.datastructures-19.8-cp34-cp34m-manylinux1_i686.whl (982.7 kB view details)

Uploaded CPython 3.4m

pyats.datastructures-19.8-cp34-cp34m-macosx_10_10_x86_64.whl (285.0 kB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

File details

Details for the file pyats.datastructures-19.8-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.8-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 10f24f132435729a6da33ba158ff36dc4cc2de192afc56128969fa48dc3a4fc4
MD5 1d28ea702d3b79e572ca8b17a768492b
BLAKE2b-256 1e227804f03ed359061aade4504f34d8db35d659c4b5983433abd15ca0f65cc8

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4183a70e02a545181746556efd287fc0f85339597eec2c6f1f3a5e9b93ca1454
MD5 03511764a84e463fbc96acdbfdfd643e
BLAKE2b-256 7abfa47587e6b9a687d6a44599242d287c308f7d61b89937911ea7bc8c777658

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp37-cp37m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp37-cp37m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 294.5 kB
  • Tags: CPython 3.7m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp37-cp37m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 259f08f5a1dd98f5f6e0d706ee1777edfdddffbd8dc82533cc32555e507d5450
MD5 e5c9dc0f491660f01e93659b5a2de31c
BLAKE2b-256 7dc32a826c3882dfda0dd2f0a54f3982221c49eeb78a99675d4f72d8a3159563

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.8-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f0da23c059035eb432fd44e0b4d34a29d30aa4661e6afae2061689c3d754c8a7
MD5 782935e1c802a2b1d272180b6c4669e4
BLAKE2b-256 d739150fe1c7d625ce7febf491d659ee733f724ecb64d5b35994fd4747ab9138

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c58aeb3ad3b6bb318267162d4a606f291d9a9dacc7d5927e6489eeabb61bf4e1
MD5 531d4844fc24501e526d7748bbbcc413
BLAKE2b-256 085cce5a812892b3bdd8a83d237a4558bcd4cbf3d36eed9d5cc86598c2e6654a

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp36-cp36m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 301.1 kB
  • Tags: CPython 3.6m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 24a00857f1cac8f922e562d76d0198262b4c9baff9990b004e714e25e8549b45
MD5 2ef61d45916b0b090e9d98b4660605ab
BLAKE2b-256 ee9d38a11de08dc324895dbe7baeab996ed1f2d272634d6c346988e64333c80d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.8-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bbb2b62fcefa6ea24f923a6bbae7785e191eca03996bb5cd28536d93ef14b894
MD5 9f10f5f6cfce8b4801b3052357de4ddd
BLAKE2b-256 76635d23a17a470343974c020c6a344d3bcec491bf39bc5b45ac6ed206361d72

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 975.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7144e98ab01df74603b2b44ab08a290f421e8d8fb5ffd383a8cb9a47af25d05b
MD5 f00c13e79c2edf0cd619bfbe8bff5c10
BLAKE2b-256 17f06cde260f9e941afdf78634a5e03fb8a72ed4acba1ccab8293e7f9f5d7a6e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp35-cp35m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 289.6 kB
  • Tags: CPython 3.5m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0030b428bde0229db5c5a6da842823b301fee20edcdfc34f63c1ad902a12e22c
MD5 d96b9b1fe1525f842a468b84fc82c8d1
BLAKE2b-256 ae4daf3baa5dc5bf7f3763996e3aaab8a1dc1e30845ea373044886c529a492a6

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.8-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2bedc092862f64deef0b0f65f46ab648fa9a0e415f1c0cee467e8be9665cab5c
MD5 0d24c934f2ca5f0cd81b3be55ab4e372
BLAKE2b-256 9f2f9591848e89e64f90f3f2d98777a5e6b199f8e677bb31797d71cf22ae9d69

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 982.7 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 819fac2d282c204bbb8278c3429f325e853b3eba535642f9d535b8606de5531a
MD5 624f1aed125d366530cc78e10baac106
BLAKE2b-256 90018deb6305d3ef7d2697a427f19efb25a3030b36eda0e937ea4150b8d52c03

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.8-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.8-cp34-cp34m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 285.0 kB
  • Tags: CPython 3.4m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.4.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for pyats.datastructures-19.8-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1c123c52a90462665dcf9c1257631c3293f30e0f4a1c9e47b0d868c800f013e1
MD5 45b9d7e35a51250bde523df650c15358
BLAKE2b-256 0748d4c9d9253c104c83fd10b4eea7a72d81641bf56fe7f997d4e1394a4e4945

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page