Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-20.5-cp38-cp38-macosx_10_10_x86_64.whl (297.7 kB view details)

Uploaded CPython 3.8 macOS 10.10+ x86-64

pyats.datastructures-20.5-cp37-cp37m-macosx_10_10_x86_64.whl (292.5 kB view details)

Uploaded CPython 3.7m macOS 10.10+ x86-64

pyats.datastructures-20.5-cp36-cp36m-macosx_10_10_x86_64.whl (298.8 kB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

pyats.datastructures-20.5-cp35-cp35m-macosx_10_10_x86_64.whl (286.3 kB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

File details

Details for the file pyats.datastructures-20.5-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-20.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d915aad85125fb1bdb89487617f4844d7e2bcfe8e8b3b1ed7c436fe94ff7d6f1
MD5 8eab32708601f089fa7026b90a7841cd
BLAKE2b-256 3d96e062c7dd92c2694fa4750b5d1d46e19c45c6abf9207eeba6c30b71d69e91

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 510632e69ea1e91382c287c772a54984b1600db06016cbaad738d416521e239f
MD5 3078dbecb445d57fcb9c0592a548bae2
BLAKE2b-256 04707bd9edea9d69b34656333524103f821bd46ad070b94835b2d4f693c7460d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp38-cp38-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp38-cp38-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 297.7 kB
  • Tags: CPython 3.8, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp38-cp38-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 799e490d5e1a8d65ec32a96d10e03888160aacd45c628a00aaf6fc7de1448f0c
MD5 849e803697d9310b2eeb712a9f0d472a
BLAKE2b-256 7c1c491b735e3c10ce6f85b71ac15670e8e964f60e7152138936595c392cff0a

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-20.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 66b0941610ccd4027a7505b058e1719a46372a5b874bf760b1600b587f696321
MD5 04078c721b3c0d0ceaa460a8f4df57df
BLAKE2b-256 c98315a65f10f4217648c9cef5a1fb98d6ce2250cd428fdc896b4a9dd9d027a6

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ac3fe260e612bb63c0f5504c85e6df453f646ac54e6c8b57204c6b2c13157b67
MD5 c8fcc75495095a6b5787fa510d95b8ec
BLAKE2b-256 b2dbab663331ad5b44374be6163a106b16160c94ce436088505e0317a9210605

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp37-cp37m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp37-cp37m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 292.5 kB
  • Tags: CPython 3.7m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp37-cp37m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c3209a6a1b8505a8b9e6ecae135bd61d98ce06d35ab8dcfbb04a8049937e7c61
MD5 4f88d3a98bbc3329cdcbc1d5dc8ef314
BLAKE2b-256 756b0ddb5fe38fce58f6eddc99549739ba6b50a2ce7fcc35a4ff79c189421111

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-20.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0b3be393e89ac2540e63671540742ccaf6d864ed9690f22f59e3289622830a3c
MD5 42cb41d0b0447643033a3e49c28f1a43
BLAKE2b-256 02845c0d994a3fa1e78da4db1153baf6984e0feb35b0c6de19dbdc24b505a2be

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7fd026491b0ae47af3e505314d020eb831c35c23c0f7b3b677f3e3de711bb90a
MD5 965611990cc56a69886d2d31fe52a5f8
BLAKE2b-256 068f84e31b7e31c7f45e394d5eaa625cbcd1d224f83dc208af07230e0303b81d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp36-cp36m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 298.8 kB
  • Tags: CPython 3.6m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1c587c20fcf0a03d4efc9a34a6a01f3b6063b47fbc02886b248b9ecc3204ffd4
MD5 e7796411d4548173cbee40f2d74b0fa3
BLAKE2b-256 8dcafcab6379650a2076e7d00bcdc69f89e0ea8db6ddba216059409e262d2f0d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-20.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01f417b27b5bf4c57f5ccd4d949aa640e8f678fc4e196371655a4244c3cb2440
MD5 a909aff050bd7dc73b826edd9ec3062e
BLAKE2b-256 edce69c9fbe0b8d36115210c1608194c9f4f2c6bd47f6bdb1bb4cfc447d7d56b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d2998991f794f6b9d676d39922267cbc61fc9773701fa2e34c13f54f0763cc1b
MD5 6cdd779321896c4dc19ebe5b63f4c0c1
BLAKE2b-256 b2a670e08ec592b5f1f17ed32019c73d81d30ac0068ae122572491763d1b24d9

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-20.5-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-20.5-cp35-cp35m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 286.3 kB
  • Tags: CPython 3.5m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyats.datastructures-20.5-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f21913a3b62ca2a38b03adbe13640446f42360547b950930365fc66de76828fb
MD5 a91dcf6cc7ce2fd0ffe536396fdc6242
BLAKE2b-256 2340001c881fd34902a2a05ef61455bc93a101a922ba241c787a65523156f0ef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page