Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-24.2-cp312-cp312-macosx_11_0_universal2.whl (651.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.2-cp311-cp311-macosx_11_0_universal2.whl (644.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.2-cp310-cp310-macosx_11_0_universal2.whl (634.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.2-cp39-cp39-musllinux_1_2_x86_64.whl (358.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyats.datastructures-24.2-cp39-cp39-macosx_11_0_universal2.whl (636.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.2-cp38-cp38-macosx_11_0_universal2.whl (639.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyats.datastructures-24.2-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64e93af573762b1c96960826d3aa64ad195e7b5dc286678b1830f26b6442e024
MD5 2644e90b2c1f544be3fad721d71263f4
BLAKE2b-256 15dcfa51b6b1918601a8643171da76b7bee49858f4c837f212b7a99d823ae404

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 129ab87923b513ff58a853f7fb29a9f99b41450e70aed6084dde5948f16147c8
MD5 ee2fe9be71eba5f52c4705b337482e67
BLAKE2b-256 3ab0810f57eada9bdc2709dff338d0683a0a7f6e0b7798f9663428151dfcfd22

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 4efdf14d8e1f5cea3517dd1b016a385fe1783ff2a62cec8acd76055b632483b6
MD5 1c6e5c2333f8b8861849d05f8c346a00
BLAKE2b-256 b7791a7955dd2778bec01ed5eb787e19c142884b996a8565ed27130ae13358df

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f81d05b8bee5287293a6375880aa198eacc02a1d6ce70aa47b7b5542e12e94b
MD5 971c71bbdb1f92c071194b77ce6cf639
BLAKE2b-256 5d20351b7bbdb2d85cb01ee0e32bb8335214c7edf2f8be72e21631eec989fa3f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c34d99e961c9d0a9feb14308061b0fb39aa0afe69b0dc3f7afd6ad798df6acc
MD5 bcc6bbc87095d5f38fb877299841244e
BLAKE2b-256 cedc9ed23fc998b15ea675b70c7301ffb34457c142b351802274be6e23a22668

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 72008c3aad7cd8c84d8d8caedd99f3b805d85a7f7a107be3e771a95c69e4df60
MD5 a0c017898e1779bb3519d32ef886b965
BLAKE2b-256 4cd601ebf00f5a28b975507b2bad33537bf44e0dbe3779b0d2995cb494a8a08a

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 319c0bb8c983c97cd8657f62a01f21ecabc9f8e93c775d039950966dc64c053b
MD5 5ae05590131dca80d363c323b229a51b
BLAKE2b-256 e6509fca9f111bf6a97af5796303ac7b20eb8a91ab7fb9645d344fcaaa918bdd

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3c26524f95e5b3138edc9446c8db3a772f599fe83e1344d7a3501244749f7f6
MD5 fcc8d9071031f89dc6a1a74bd1fd4d1d
BLAKE2b-256 d0e2dca4c0fcc45edf570acac4c43a7125ad2715ae6fa4d8c580b21f4a356ac6

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 1d28a9f02f16ba5c653ea8935b5e818755c8a4e3a25eaf55904c380db3e3aa1d
MD5 fcc5b5b15a8fee8bcfac82dbfc7228b8
BLAKE2b-256 cd436424c1f668b1d0d4ac3ff4dbea52f78e0a076d49f420e975c72e0e6ebdbe

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 325b9317e88aeca0e2ee0018f6eb6f2a6a6540224b66de40b2037d38eb6d6a9d
MD5 27a1c55ed689819036ad8fb3bbb6398c
BLAKE2b-256 894b17545b61ad0d21eca8926cc8a9c73a26506b617b4ec9303d51696aa2c956

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7ff2e51916ccd08fc96c3a8e30e0bc085782733652fd563eb3df0f2ad462078
MD5 c29a8844ac858c251895d1f9eb37631c
BLAKE2b-256 91f0421a20619b88a66162191540ed9b48f0302afff2def192f057680d6bdca9

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74bb2198602b33fa8288beb01cda4b3a4c2086c03032548ef68c5470af68142e
MD5 bd480f32233f7e0009ea5bacc17b92df
BLAKE2b-256 dedabb566c12c533dd7b322bc8a67fe210550b9891db108ffff205cb8e21ef1f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c22ba35b3d754c70d9d0f5acfe3d1aac29d4fb8623b4e67f01faae020376e8d2
MD5 91c73efde82040e4ade7240d204e25ba
BLAKE2b-256 f1c88853f3031f31d56ccd357af29531316823b8cefea8617c80c90481e2517e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d3e9e5e079015eba13a1ba16c9d419eacc50041aa49b95c1f1d954f33393039
MD5 a461a7abe2a89a2657564ee5da5803c7
BLAKE2b-256 3de7353e5f4113e5812d3eda25b9d28f4788da9232975c27a336278ce8757c80

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f77d59b74ac85e3bce1b194f607b035bc36bebb9321334247fc1786fe3f87f48
MD5 a6a4a89069afada8894a1f5ece124e6f
BLAKE2b-256 fefd79b867caca87de0eae48c70740b637213e10a0b3dee7eccab9acf24b0b4c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.2-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.2-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 a935a9244e02395ec3eb623cf77cd734b598b4e5b20a91f353d702b0224c78b5
MD5 631d8f943415c73fcf636e63288f0106
BLAKE2b-256 3d9985945e64bce2a93e880813c0f950c5aee96b6762c3b019eef9939c8fa4da

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page