Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-24.5-cp312-cp312-macosx_11_0_universal2.whl (651.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.5-cp311-cp311-macosx_11_0_universal2.whl (644.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.5-cp310-cp310-macosx_11_0_universal2.whl (634.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.5-cp39-cp39-musllinux_1_2_x86_64.whl (358.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyats.datastructures-24.5-cp39-cp39-macosx_11_0_universal2.whl (636.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.datastructures-24.5-cp38-cp38-macosx_11_0_universal2.whl (639.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyats.datastructures-24.5-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89b63a39dbef44751986446179761bd4ea0de277118ef1b65a370993e0dd11d9
MD5 c3c27f18d16543342f836ca2afa70d1d
BLAKE2b-256 7f9dc277b69f40b20ab3e8b722dd01c953b12bca42109cf3ccfdadb3603baad8

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 8e7847f8c6e4e99f1e7df60f88d0da44a05e34282e737d25a540a7dadfab4ea7
MD5 208c12e951a8d15b02a63ddaece91fe1
BLAKE2b-256 deb7ad0ba38181ad09c0944d4a179bc6dbc0348b2942b77cab6685181e26dfc3

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9b3f42a83396145bb3683c61dc71d20c0e4982573c838546901564ec99f31b7
MD5 e262d9c444b9d5c05952c51a026c441a
BLAKE2b-256 f049e93d31cb312bc29470dca618c5ce4eef0c75fd29bb9e27e7692195cba2f0

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2312336cf7f0bcdbaf963e470e5f415c3a2fbaf70c89693b945757938a40b823
MD5 79a55432746b21119656a1b2f7da2a41
BLAKE2b-256 cecff34e68894ffaa7364d44196be6a0ea49424eaa2a0bf26357551dbb513f21

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 5e269338229220e02b079d132255d2365b7968c81e15d8e2f4e0736244f57bdc
MD5 7f5dfb8b2268e3a30d44c4d855928281
BLAKE2b-256 ec5bdc71b35e61828e239820dc40dfe64717f17c2758d479b38f980de99e362d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1580ebc16dd72d6757975d5fc5a86611d17330fa1922e59641858919d9a3c4f1
MD5 02e84e7ff68d055bc530b06155c6c058
BLAKE2b-256 4402e6b6ffd58d6c4c20b52af51a61744787a1316909f02bedcc6d457dde3c23

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7001e549dd082f9e249099af7ee1b9046ff53a564bfa03d9875c3ed55f12cb6f
MD5 131c39220aec599ae58e41f0aff49895
BLAKE2b-256 3e2938590c50e26c6043ee362ab55db26605bf7f9429a5843f77ff84af45210b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 db255ed96f30f5013a883b3216ba18d1380e18367c42b2afa8f6e2f0ca0d5829
MD5 6a78540e311542b42c43a1d69e686e8b
BLAKE2b-256 32db85936a14c328663277edbcd1b57fda99bfcaa239b7c5649fec9ed86ff1aa

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 59dce260ba23f62921cc82dfeec74cb4366c0a066446b7b7aaff01af1f87f465
MD5 ecbd86ba85ebd77518651990e37a70cb
BLAKE2b-256 f4845e36220ba523fff40ea6d7f8ad1f0cd6ee3871d6a6a52afcf7cd6d82569e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b348ac0ed136d54a63c36996cff868330482f3580f1bb1b6e49df3ae5cd2594f
MD5 d6a0d7199a468fcd681d2cced1e16212
BLAKE2b-256 7729b82964dcf1b408bdf8c2e6969566a3719449007aac81bf2bc5e50541ab9a

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa0bb568934881f0a497455fc0b0209b4e3bf9d1087229a4908782b45b22d2d9
MD5 132cf9cf20d653dd8f1ce4e889a0cf90
BLAKE2b-256 08deee567cf64caa9e7555a276c57b5493df2a006f50aad8ee7254299387ec22

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 1791911919678b7b407c3e0f5678de620a7685776263a42df25e2e6978448abd
MD5 28a083ee32d3f6f63ecc8570362f95f2
BLAKE2b-256 1476b4090165b42cab7d695cc0d462ff1c16bd0b847ee8df3216daf28fcc7e83

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bfc37b4d05822c6c6b2217256b0e654dd8aff9c81b67b2c8b9d7fbfb71c733a
MD5 ce9bfbcff020efb3f135c44156bb2824
BLAKE2b-256 5f538e3f6a777d71292595244fbedff25a3498e853ddccead8749c51a679af98

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a885c90840ac84702f7a9ce0fe95f4d6916e0a3677d1423646c84d3f847320c8
MD5 20ec05410274a0d89bd434d0204435c9
BLAKE2b-256 0f74b9637c85b3dcc55f5654baede2a93ef894d06ee76ae06dbd71710a85e84f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-24.5-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.datastructures-24.5-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c5c01e6110e39c7c3e1f24c80d9a1bbf95c94ed3149dd6085a1c9089613cb6c8
MD5 17e3c28c4df0944b030d12ce4498d1af
BLAKE2b-256 bbf35eeeca598acda3be7fc4245add6ce112eddee4e54860efb4a6fcf579bb4d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page