Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip isntall --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_13_x86_64.whl (229.7 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_10_x86_64.whl (247.5 kB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_13_x86_64.whl (228.3 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_10_x86_64.whl (241.5 kB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_13_x86_64.whl (238.1 kB view details)

Uploaded CPython 3.4m macOS 10.13+ x86-64

pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_10_x86_64.whl (244.8 kB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

File details

Details for the file pyats.datastructures-4.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cc06302a8e6961bccc9a60a48376df47bf810fb59dd6aacb1824c8e2fd19078a
MD5 16abcaa2af1dc9212c8e8bb8f59ccdbe
BLAKE2b-256 13cf32b8a8d0be65980bfabf9a7c66dbf35d9ba0009244d677e199c11275887e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bbc686039e9f758b15e771df16e41f1705b198b60a7fd079b2be97d235a7be01
MD5 fc6c9dd28df319207fbf3f345633b749
BLAKE2b-256 aec94dd21fa87f695118013fad0f170330684a2cdb31cec99860e839985bf0d4

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 870f133673346de841e814a32f974a657f30f2bcc0fa56adc303143155971f29
MD5 a03f84c96c5e079d0064254062bb1795
BLAKE2b-256 3c29abd7adedce40830f6f6f291d7fa44c4b78bc9358e28177f21e344a0f98ad

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4b5d0480d3100582a27f007b72438af12f65c8312d6adc464123c1fd39f0e8b8
MD5 269acfd418bfd13b3df040b01189ed4b
BLAKE2b-256 225ab3731afee3924c23178740e45448a92256f7a0e7bf9bca6dce2b6e219a0f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66dd35bfb04a5c824819057478c11ef3c8daef42175ae46e4eb4e50dcabdbb0d
MD5 a72e265b6ae2618a64f03779371411b2
BLAKE2b-256 f5c4664c7a527922745de8f6ddf311ae177332c91a95ef18d5d2507b72dbcc51

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2cecfff5a860d21292455b5e4afcb3ddeb8b9c799eca37a6f535c56e51c75240
MD5 9ea6ac321968c891b656104fa9191be0
BLAKE2b-256 eea0ba0a27f160b870d20c4b09380f3474f41782f6a7be8f1f9438027ca010d6

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5399935c96457bd9162c4235bddd24f34d5f3a8f76d56d654bf27198a61db755
MD5 506018fb419d6daa273cc67fab552ba1
BLAKE2b-256 77d0c25b589c7fd6c27db99f4ba8ecd484c9a960278ce526695f4dcf5af19ce0

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 63663e08bf62393040224dbe2973c961d8f7fd5fc143edc79153b06198d7aed0
MD5 4f8752e18d07464dcc5b8560c8810e12
BLAKE2b-256 4b64ccc9bb5fe6edb46e21ec060dd26c2160e1e650528ead362d717a5f614f07

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-4.1.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 22765da41c4b8b68edb9014185840d4db67b6ccd98b526569a4bcd8e009fc5ec
MD5 8a5cf12175a89ea07934f3007d67c9b3
BLAKE2b-256 a8bb46659b639dd7f657f3b4da343412ec02fa4a4012c7e8f892b45128ac7166

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page