Skip to main content

pyATS Kleenex: Testbed Preparation, Clean & Finalization

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Kleenex Package

This is a sub-component of pyATS that standardizes how developers write and run code that interacts with testbed devices and cleans them (in preparation of a script run)

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.kleenex

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.kleenex

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.kleenex-23.2-cp310-cp310-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

pyats.kleenex-23.2-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.kleenex-23.2-cp39-cp39-macosx_11_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

pyats.kleenex-23.2-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.kleenex-23.2-cp38-cp38-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

pyats.kleenex-23.2-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.kleenex-23.2-cp37-cp37m-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file pyats.kleenex-23.2-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 815317d223c9cb9a2b6b4a3e2c4d044e717caaa948e045fc35cbfe9f0d59b870
MD5 25cfae58266932f22a862e19b66000d2
BLAKE2b-256 f16f5a954842a757c83b9230b3b52ee77e5c04422bbc96d9087cd2c4855c6657

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 237221cae4b290abf1439841f93b53f6892cb765581594678c47b8cee6d19e46
MD5 817a5a29ca59ff56ca70a0a9b600fad7
BLAKE2b-256 56bfe448e849db4fb557ee01f33a70da2ff84bd745f39a634e077faf7dcad9f0

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c431a3cc257df2aac57c4d400c4e2ec42819894f0199064fcb78eb43a5a610ae
MD5 592f4acb5949ea6dbafc8ced09185395
BLAKE2b-256 95433b10ea696cfde9c323adaacf7161725745770427787884e55caad0c70539

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31bc8d31344b9ce01333f23a166e8022f5a0ce80047cbcb4bff2a5cf7947d78d
MD5 47246972419e9de32453d5ff87b75fc9
BLAKE2b-256 3ae3d3b30a8cef3adb46826104e81d2ef8fc3816a561480471add1c0d2a84904

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d22a36e5eae357c5f95a3e863def7fb4cfda74dc60f0814c8433ef28564e6fd
MD5 c928673060180c2be41951ae32eca246
BLAKE2b-256 93b57bad188e865da07708f0594beb89b1f58d6ca2e8a25fa3f4061973b24d2b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 cc47d42cff45aadde182dbb9cd38417cb24206eb92a264281cdd30c01dcca480
MD5 94302863d0163af50b5b96de3398aae1
BLAKE2b-256 5426c75bb9cdc2590d8ec39fd65d59a3e249cf1f821411642b01c3310036b824

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5f1753ee9de92efdb8fc0f6d6be29d0882b34cfd38cd3102b15cfa7d5115589
MD5 179788cae907692dfe52b5ddb35d8673
BLAKE2b-256 fea4cc98ab2ec609f028dfa9afc793eca5cf44bc8dd45d2fc412344a2418c093

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12c956bee39ef5bf45c9946cf39e56da9974ef73d9e0e868d66297f8917ea491
MD5 85ba0269ec1c7ac623e55ad0c7cf114f
BLAKE2b-256 4de241986eabf44178a9f320b22d9620c8833cecf5722012c1efd56d567ea5bf

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 40c165423af392c798fa20153ad0bf29857ff6519f608e25bde304c68a5922cf
MD5 24682ad36d75381102865199b322ae8d
BLAKE2b-256 1a95a9a97aca7d9f3f5ea0c5c305c850e7b983bf2f8a6b609adb06c0b830da2b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e23ebe57bb497b306a37ee95eb98b84388ec6ce1b244961c573bbd68eeec057a
MD5 0ace44a964ff8d1dc70648c39c6d1d4d
BLAKE2b-256 084fefb4400674d9aeb3f8a118f29b9adebc2c76c608fa327e1a69017c0e4dab

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26c5d3f960a677b98bdbe2d3c4059460615aedac3ccecb6f2f5b15f1c81023b8
MD5 1c135b7041e39079d71bf3c059b840f2
BLAKE2b-256 283039b788879374e3e53ce42a759feed08d91db63a0d94c254d38a8f3f6fa83

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.2-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.2-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 43a76e5fafda1510f0039cb64e53cb45063fff6b0eaa5a95c9867a3a520d1297
MD5 b3061093a20494ce7b94a4aee52d5126
BLAKE2b-256 c0798cdfe2963d56ce56dd0b374d4de5603085d7b301498a458322968e093c13

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page