Skip to main content

pyATS Kleenex: Testbed Preparation, Clean & Finalization

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Kleenex Package

This is a sub-component of pyATS that standardizes how developers write and run code that interacts with testbed devices and cleans them (in preparation of a script run)

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.kleenex

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.kleenex

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.kleenex-23.3-cp310-cp310-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

pyats.kleenex-23.3-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.kleenex-23.3-cp39-cp39-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

pyats.kleenex-23.3-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.kleenex-23.3-cp38-cp38-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

pyats.kleenex-23.3-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.kleenex-23.3-cp37-cp37m-macosx_11_0_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file pyats.kleenex-23.3-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f14d85a3644e16f467edcfbdd4cbb568398710d3fe0d66839b0d59116f9fd9d
MD5 3e9fa4f92881917851c3ef1d693f4146
BLAKE2b-256 91e03e5ab8f24bf33ffc329dfae116864209f7f615b6e14dec5b4bb22f2969c4

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 28945ba1a8b383a5f1dd2d7191a70f5038646178ce4614ff37d8a0952dba5cb4
MD5 989ecf70728efd045f7dba9c9d179168
BLAKE2b-256 79605a4e1305017044c4b4ffcb3ad4622bdf1b055b9d5c6f096beac0bb4ff595

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22d71108869405153023108378dfdf4cd91008125880b300d7beba04158b6e3f
MD5 fcf020b03982863b5f9f5f3153a3bc14
BLAKE2b-256 f6e11c20522fcc2d3e76515c6da104ae341098e1c33cdea5d34dc084ae8abc63

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd555000d523097ad2b17d353707ea99cf2087e1416aaf8d08f2538680d24d2b
MD5 5fa82a2c49db54f056b2cbbd01c08218
BLAKE2b-256 2cd9a9858ced3fe7ed913ea5e145016763ef4e9e934605b69846fd92401798a2

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 374878cb23a4d54cb55c308ea27ddd6522b9f566ef64be935af102f85f050b60
MD5 20c3ae8f6875ff9135b83e654c5c6738
BLAKE2b-256 37a216abedf2f13159679cdc24fe9bd97ebd5d40262bfacc0aa59cfb354f58b2

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 30554203b108d172b72dd7cf9412dcfa3392c58b315d64d6ddadfecc034139a0
MD5 95778bd596ea8e3fb2c603f4b435269e
BLAKE2b-256 601f705b29b439d022bbf66302d39452473ea7d334cfff61b8baa17aceae0c30

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd8802dc61357bfd6e7c5ebd29f833bc73806af150688b66dd8a60ad8e3c864f
MD5 e2ef374d1c28509804c2c8b012df3ec5
BLAKE2b-256 6a6d0d12a1ea2788887a3a66891a483eb663b8a01ac67a37ee15012289e15ef5

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 340d73d580e723637011471d84a3b1b567e012f56ea99197c4d6dd6c7836f1c8
MD5 f8a3441d26b55876d4da33c0d6d5c673
BLAKE2b-256 3309a736adf948447c6113d00330ea99ca1f9d4486ae086387b6f58bcd3fe3de

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 7f60753110c59101c8982e313de18f65c6fe8320a07b12f37d39591c89be74ea
MD5 43fa2c7edb7ea6ba8418137a39976330
BLAKE2b-256 17cb15b32aa270556fc91d094d2b591eeef0520518da52983e897438e229fc75

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49cd093f6fa175a8c2506900d2d806e31d80decf193b051a579bbb4db733cd7f
MD5 00de4cf2660b5330c50cce9c60b20a46
BLAKE2b-256 6b079b2a61b0714f93f45f8b1b5cb15d7e083647dce4201a79359e9b504511b4

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ff390721b45497ab7552142e214e7504853eb0c9376123071bdf2b5312b7ced
MD5 03d8586a0bb7a73ed5ad77072e5f521f
BLAKE2b-256 b506b78fd2a744de750ecb7b368d8e2ad58b581b3bd8bae9058458f27d9cbe9e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.kleenex-23.3-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyats.kleenex-23.3-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b96343ca923dfbe5c4e29a1fb598467a871320610ae91ebcb9bb255ea63299a3
MD5 b3d6ed5cd7e9d41fc1434f32c72d4594
BLAKE2b-256 c407b67a8492f81871fe36e4b69c8fc02f48e67bf4bdb4c0b1e40a56876b9a5c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page