Skip to main content

pyATS Tcl: Tcl Integration and Objects

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Tcl Package

This is a sub-component of pyATS that wraps Python tkinter module in Python for better interface & datastructure casting.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.tcl

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.tcl

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.tcl-22.10-cp310-cp310-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10

pyats.tcl-22.10-cp310-cp310-macosx_11_0_arm64.whl (453.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.tcl-22.10-cp310-cp310-macosx_10_16_x86_64.whl (545.0 kB view details)

Uploaded CPython 3.10 macOS 10.16+ x86-64

pyats.tcl-22.10-cp39-cp39-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9

pyats.tcl-22.10-cp39-cp39-macosx_11_0_arm64.whl (453.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.tcl-22.10-cp39-cp39-macosx_10_16_x86_64.whl (544.8 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

pyats.tcl-22.10-cp38-cp38-manylinux1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8

pyats.tcl-22.10-cp38-cp38-macosx_11_0_arm64.whl (452.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.tcl-22.10-cp38-cp38-macosx_10_16_x86_64.whl (531.0 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

pyats.tcl-22.10-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m

pyats.tcl-22.10-cp37-cp37m-macosx_10_16_x86_64.whl (516.3 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

File details

Details for the file pyats.tcl-22.10-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e249b1219a5741493c390a2d12307e1040ba413353b116939728d702b1c22baa
MD5 e25484e128a7732361e04fb81101b04e
BLAKE2b-256 d9e0a56c4fc4db322d8c1b5198eaf7bbf3214a8dc3da6e80ec45ecfafd8dbcbc

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ea05c69285a4a7ed430289482b8729a59f3f5cc40a709f439307afb5423b6ee
MD5 c0310419fbff3e79d348365fe0b158f1
BLAKE2b-256 f0448186c47b4ba0ab7ceac21c04cb3a77b9f8eb026dc55c92529b9c3221fa62

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp310-cp310-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp310-cp310-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 0e781d941041b22b6ebcecb4f19381895b036b9136fb76f9587954be6ceba581
MD5 c40eb9d03c467fb5d5052cf29ba2a86f
BLAKE2b-256 c1d94c5b536766e27341420911babe1d9a9b1c60330536193facd71d1755258b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02a0f70437977e2836eaa578c296d84caa6b7e64b456b982d2adcd223c07bbd0
MD5 bfa2bbc8c20a0f7d9b5c7485c79052e8
BLAKE2b-256 ec67d5ea717f12945dc9e7f2a39bc4ff70ec101022d032d004473065f380e489

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 80c2f629227cd3add6df1c2a069353bd428b64b3b9cfa00c8d487ab3c716c45f
MD5 d12e1dc5be91daaedcaa02a4ecc5449e
BLAKE2b-256 f9d5ec2cc711671499cfd5ea7535e8eeabc5e57c9c712af1cd3d14c81270035c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 90016f0df94e3e270017fe7fac45a403ad129a3e910f4a1f7a3b7326e0cd1046
MD5 a8080863d6750a2bc67a42a0d0b683f1
BLAKE2b-256 a4ccef3606ec5258af7fa7c7d2d6cae948c6a7f137a99da2391e81358e02cfd2

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9bc08284803e3fca376a735fd053b75ccd56984595b8b55bd95bdb30504cfcc0
MD5 259414b115c6a5f9c600bbb382eb5e72
BLAKE2b-256 235583cbeeeaab8b136437185a1d4d088511ae4a875972e9ceca2e85c57102ad

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74af239e1b9b81d4904cb89d26c3e1a40f93a496bd7746c9f4b4d5ee47ba34ff
MD5 c1e23d9f41da6424e135fb9ca0eeda40
BLAKE2b-256 dda2b6b871430e5fd396289a1d50d7122cc3808a25beac050c540e77c5f69454

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 bca4bd6a0147ab1d55ff8839018ccb3566c64ddd7d961c1440e09ec7bec1957c
MD5 28b98b740a38839fdd7aace342bd33d9
BLAKE2b-256 e394a544b78ffe05645241dfb12c7d6087d7951101bfa3af95d257a79ae03532

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a72565805c7e7b26fde3817c084e9b4cb088d658280825299601c6efdc27157d
MD5 48892987bcea4ab37d0fc9bdd76cd7dd
BLAKE2b-256 2b0d460273eec6edf4fed78f1feff2cd7132a5d6ff9c2c2ff55ccd15c294cf57

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.10-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.10-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 7b62fcc0a01704c1ac8fde412992a9356770279047d49d4e8a4b3990cfd38ea1
MD5 f23d46ffbcab17340245aee593305251
BLAKE2b-256 93e96681046697da3f66c5887fc48b29b7f80a0c0223528d967d2fc24acef4dc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page