Skip to main content

pyATS Tcl: Tcl Integration and Objects

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Tcl Package

This is a sub-component of pyATS that wraps Python tkinter module in Python for better interface & datastructure casting.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.tcl

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.tcl

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.tcl-22.11-cp310-cp310-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10

pyats.tcl-22.11-cp310-cp310-macosx_11_0_arm64.whl (453.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.tcl-22.11-cp310-cp310-macosx_10_16_x86_64.whl (545.0 kB view details)

Uploaded CPython 3.10 macOS 10.16+ x86-64

pyats.tcl-22.11-cp39-cp39-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9

pyats.tcl-22.11-cp39-cp39-macosx_11_0_arm64.whl (453.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.tcl-22.11-cp39-cp39-macosx_10_16_x86_64.whl (544.8 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

pyats.tcl-22.11-cp38-cp38-manylinux1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8

pyats.tcl-22.11-cp38-cp38-macosx_11_0_arm64.whl (452.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.tcl-22.11-cp38-cp38-macosx_10_16_x86_64.whl (531.0 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

pyats.tcl-22.11-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m

pyats.tcl-22.11-cp37-cp37m-macosx_10_16_x86_64.whl (516.3 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

File details

Details for the file pyats.tcl-22.11-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b683fbbd31dee55454b33dac640899997665775a916e3688741e8c6943b63c6
MD5 c7cd78f0d04779bd533a88a78f26fd81
BLAKE2b-256 7916b1d73281e08d1f72ee76c7a7245e6b87e7d454d16970e366af4b445fd282

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e5ca5e299789a4a54d67a0369ebfd9c325c36f41b4bff47aa09fe444bc2b012
MD5 e8ce512c8856636068ad50ee3a7af528
BLAKE2b-256 f145feaccb518efcfd9d153b9b91618bbe4919ade6597a6063e2b1241cc54a15

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp310-cp310-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp310-cp310-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 4a560c8509cf0acbeb293dc9a5ffa70d281e70eed9dffd167bbc118f214fc2bb
MD5 475b0a278e6409b1ad156fc5e7c72772
BLAKE2b-256 d6eeb94054c31a4f5fcbd3d4348ef39e1c24efbafc7ee6473a6122016c27f3e6

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 018c6d326160ae149daf3dd6df3ecb5c05e742708196f0dfcbabbab93d13384c
MD5 26c488bb6479a8036ba867d3d6195cea
BLAKE2b-256 dffcaf48f02be0f90f64855896a14273dfeea069b3cb995fa5dc12c5591bd6f1

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9c4c4052ae9e5245c56bd1de484427ffbb14cd7120dede9ff982c701f1f6eac
MD5 ae642851ecd6e1a7b060f3412379fb53
BLAKE2b-256 5558ea59b0ba1681ecda23018dd392566ff63b772c40b93e3f02acd445e3be2f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 df837ecfa513c0c6a8be424c07761b912f9c91a0bfd8193764f1880d5a74493b
MD5 537d6017f9c1cd046e6590d418dbeb68
BLAKE2b-256 0c9bc25610b8d10ba875b99f7a4c699e5245073263bae9d2a1c59e5cefa5dd6b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 527487f928e00958348b15d1480302ad92f5b25d34c517c71480ae520a033c64
MD5 685c960a542fe6a8e7a1adedc758e488
BLAKE2b-256 98772ed8e581557dd14fb2fb526a16a45b98a33b482109cf2059ec632ae8f061

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5d49e2759523b965a0894141bf0bedc521ccf13590121e3ec3647b0a36ddeb9
MD5 227cc0fb7c107a951eb8efb1314e4270
BLAKE2b-256 e0268f6a06a8d7a0594bdbdf7dfb2efd589067ef50e84c6d5dd9f33a9c6c3404

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 90182ca817190425dbc6710cc23d0475f7dd9ae30683ff27475d41d730e077f8
MD5 95fef06e60cb0d24073a4cc7c95e3cd0
BLAKE2b-256 12bf8280eb3ea6da1fa8878e0601dc10d768c0008f516f645636b3f1674ad8d1

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3e95260f54f6af42662f9d790cf96df292991145e3960fe3824140b3eaf80208
MD5 67514944437e271a41647b39183bd615
BLAKE2b-256 54da0964fd9145eb9a9706790c410bc69b46ef4a0767ffcd4e3416b3b3532715

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.11-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.11-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 81fc2422c759428e9d8a77f2169fa5c740b2c3b182dfe904186456c5851f9bad
MD5 62af03e4308976b14b9d6918aa0a5b36
BLAKE2b-256 892ce9c7b00d652195b3cfbb80abe577e8791243ac29f9bb60613fbec714b02d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page