Skip to main content

pyATS Tcl: Tcl Integration and Objects

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Tcl Package

This is a sub-component of pyATS that wraps Python tkinter module in Python for better interface & datastructure casting.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.tcl

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.tcl

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.tcl-22.8-cp310-cp310-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10

pyats.tcl-22.8-cp310-cp310-macosx_11_0_arm64.whl (453.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.tcl-22.8-cp310-cp310-macosx_10_10_x86_64.whl (559.5 kB view details)

Uploaded CPython 3.10 macOS 10.10+ x86-64

pyats.tcl-22.8-cp39-cp39-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9

pyats.tcl-22.8-cp39-cp39-macosx_11_0_arm64.whl (453.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.tcl-22.8-cp39-cp39-macosx_10_10_x86_64.whl (559.2 kB view details)

Uploaded CPython 3.9 macOS 10.10+ x86-64

pyats.tcl-22.8-cp38-cp38-manylinux1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8

pyats.tcl-22.8-cp38-cp38-macosx_11_0_arm64.whl (452.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.tcl-22.8-cp38-cp38-macosx_10_10_x86_64.whl (547.6 kB view details)

Uploaded CPython 3.8 macOS 10.10+ x86-64

pyats.tcl-22.8-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m

pyats.tcl-22.8-cp37-cp37m-macosx_10_16_x86_64.whl (516.3 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

pyats.tcl-22.8-cp37-cp37m-macosx_10_10_x86_64.whl (533.3 kB view details)

Uploaded CPython 3.7m macOS 10.10+ x86-64

File details

Details for the file pyats.tcl-22.8-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da3ae8055f52caf012e0f40d2fb7d97d160dbdd45ca37f522679e4d7ac8ce5f3
MD5 d6acee3eca436c628c3ec926a20a8247
BLAKE2b-256 60935b9ed160409e2dd43a16733747cb2d6817f4fc35ce7788b77014113c67ef

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72840e76c8c5676e62b6bb64794539343d5272f2c13ca57bfe5e94d0c6113d28
MD5 375ca1664d4af1e65403f58b16c121cd
BLAKE2b-256 9d4e47e3b9fc4d85a107b44072bb5929acfa6f1b05632e214c2d492101654134

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp310-cp310-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp310-cp310-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1b2cc6de363742fdd84a68f7a118c7c3af50d6e0e5cdf57e0fe409ff12dc86e2
MD5 175854616e1e7dd7b6501e5e321d5581
BLAKE2b-256 8d75062e864c058b71981943ce8b8941feb761b6a6cdbff8bc813b4dbb377f2a

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 40558a2bf57a632ed7906a0311147cc78d2fabd416c07e56b5223edaa96b8bfe
MD5 425cde47d983415e95e09dc43af95c6c
BLAKE2b-256 9f2de159398a20ee611b1e092cb4cd2bbc27df7611547ec9e1796baa83c3129c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c00cdffced5a4e92138a85c92577427275a80ed9030a1f8206c9fab054cb9ca
MD5 c9fb1fa4d355a1fb313ef5a12715a7d2
BLAKE2b-256 92b523d7b6ef628438f651c9d27ad3f03e8529d1508767ae27d77da4dc83feb4

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp39-cp39-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp39-cp39-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b6cc7d16af2b6d837b6ff4c357ac85d41b0406811b52015167e84ff9886a64bf
MD5 5b8b697c7888fe351931878f83e29495
BLAKE2b-256 56bfd933f50eb14a1657534774820d9b1ee03bb77f6b3731a72c82cde4ad600e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 59a91346eac12c3a4a77216a00dcf5970acddfe28aff1c80837393473e23e10c
MD5 784b040fe906b64eba391eed35a7a6d1
BLAKE2b-256 b7011d148abef6fd382f7161a5fb1da47b5f9153004ca03638c5c2e58f3943a9

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e88e404f4640cd5465264ff13c5ece7cbedbe25362b3c0ae0713850125ec61f
MD5 38ec88bdea6f31084423a9b42e275128
BLAKE2b-256 570602cc1f170892293add31888e0856b6e3cb8e289b3557e731443acb348f33

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp38-cp38-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp38-cp38-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 43b8e37cd99e697fb07f8aada3ba07b626a32548737430c129e82a14489f1b76
MD5 318ef8393cf4847742844d471fdcafe9
BLAKE2b-256 ec64ddcd62050600d8814bf9429e229ac994616ed28391d137316c57ed0254f1

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5777a711b3187826c25be9253bd07f7d74fbdb460d03ff04a68249a587f426da
MD5 7b07e37f26eedbdd8f1b7b0b3af35243
BLAKE2b-256 880494b697ba9d81a9113567af2d553f7336c8c5f286318ed23504761296f6f5

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 1f2d69d34bc4e9406271f65fb22e994d12d132d6922f3112a6a79c23c431b708
MD5 ec44a2099b3151cc6d35ef6c0caa6a73
BLAKE2b-256 191339b4a4be2bff775ce863a340dc3341fce44d78a6f5d32d9cd613be239f3b

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.8-cp37-cp37m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.8-cp37-cp37m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 adc5c94a8b1fe331d7d1c569e19d6cfabe4d9251f5a906070a76d05053cc3112
MD5 b91a47837dd25aa12e81a87479630025
BLAKE2b-256 764df991bacd185acc23a98023fa6c4b13286b70f637ee503975f28afd494457

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page