Skip to main content

pyATS Tcl: Tcl Integration and Objects

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Tcl Package

This is a sub-component of pyATS that wraps Python tkinter module in Python for better interface & datastructure casting.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.tcl

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.tcl

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.tcl-22.9-cp310-cp310-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10

pyats.tcl-22.9-cp310-cp310-macosx_11_0_arm64.whl (453.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyats.tcl-22.9-cp310-cp310-macosx_10_16_x86_64.whl (545.0 kB view details)

Uploaded CPython 3.10 macOS 10.16+ x86-64

pyats.tcl-22.9-cp310-cp310-macosx_10_10_x86_64.whl (559.5 kB view details)

Uploaded CPython 3.10 macOS 10.10+ x86-64

pyats.tcl-22.9-cp39-cp39-manylinux1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9

pyats.tcl-22.9-cp39-cp39-macosx_11_0_arm64.whl (453.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyats.tcl-22.9-cp39-cp39-macosx_10_16_x86_64.whl (544.8 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

pyats.tcl-22.9-cp39-cp39-macosx_10_10_x86_64.whl (559.2 kB view details)

Uploaded CPython 3.9 macOS 10.10+ x86-64

pyats.tcl-22.9-cp38-cp38-manylinux1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8

pyats.tcl-22.9-cp38-cp38-macosx_11_0_arm64.whl (452.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyats.tcl-22.9-cp38-cp38-macosx_10_16_x86_64.whl (531.0 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

pyats.tcl-22.9-cp38-cp38-macosx_10_10_x86_64.whl (547.6 kB view details)

Uploaded CPython 3.8 macOS 10.10+ x86-64

pyats.tcl-22.9-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m

pyats.tcl-22.9-cp37-cp37m-macosx_10_16_x86_64.whl (516.3 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

pyats.tcl-22.9-cp37-cp37m-macosx_10_10_x86_64.whl (533.3 kB view details)

Uploaded CPython 3.7m macOS 10.10+ x86-64

File details

Details for the file pyats.tcl-22.9-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f4e704292466548285f3112265c443526d782f150dbff01e4eeba9aa8293cd18
MD5 f06ed2280369945e94fb3f64f926db99
BLAKE2b-256 b26fb80842784e52dafae16d19b748f191fffb26981be6ecd0c2bea768f0faba

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f8e3660bd1898e58aeac198bfe55fc7656d9e5b46df7031b0eb6cf88ba7a06f
MD5 7c8015d4a5b785ade8bcf569f1c2248c
BLAKE2b-256 55a80057187e1abe8d19fade6a00d247f0ec6150ebb2bbeca9ee73ec1e11e6ae

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp310-cp310-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp310-cp310-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 445fe0f416ccefd5b7feb587b63876c38b4143562b483de78960507654dc8dee
MD5 e8ccfef0813a99d1a7bc997afde790ad
BLAKE2b-256 e142563436e08e803cd18f89ededb8ca3f88f644a6c16e5ebb44be57f2a81570

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp310-cp310-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp310-cp310-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bd5d7ae160af511932f4731ea9eeb131a38639ef17e05bfa9a53070117c277a9
MD5 df0640b3ac6a1ef5d6818d95b62e7a7c
BLAKE2b-256 87cb46fd994c4c8583566e82a76803ef77270f02633077c8ec94cbf9d51f8e5c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e798265d1175fa04fbeb4b09933a9515836b62386d8633fb7e8ce106f1c45279
MD5 2b7dcf3adf99dcdb7ac33ab66657c003
BLAKE2b-256 58ef851852a070bc5f6fc4a3ef3b415c2b9e7d431ab5a7b4e419f228c26b59af

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d18e88203a12b72b112a9ea0b9afba4b294012b683ccd5ebe05a86b07d8a04f
MD5 22ccb670ff9fbf10537eb50d5f04161b
BLAKE2b-256 95913999d8625670ecddb64d818b4e1925a73a09df7095a61db3ebcaae310a56

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 f4e75cc8ef883bdaa8e2e56ed95d825fe993e01a57e5db80a7dfdf6362bec167
MD5 01345e2996587925694d26f3d3dd0cae
BLAKE2b-256 73636fa7655234e3f5372634185a4484c336824ea6a0fa83dc0843ff44b514c1

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp39-cp39-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp39-cp39-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 53844606ca1aecddead715d1babd8cfaffbf5d3d316b75d4c5755d136e5b8706
MD5 6a99eb5ad512e2f3fe1b2d9d083e4032
BLAKE2b-256 982358c77e6eac8aab6f2e755433da3a8b4b432fe1ee3ac1c025beeba8682dd3

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 15856aa99eda20f788ca47df2a100764507b0d2c2fdd44fb44cca6e159437a1b
MD5 c9e6ef747f4e23f32f698e8f1a0bc675
BLAKE2b-256 27707a6cdd66dc288fb4c5502469c2653b1c0c763c9cb3f25762d05a897dc8e5

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca5b14941f3adce0f17b60c90476d7c9c8721dc6222336cc3439ae10a55c55d8
MD5 e4c9f4dbd64dbd371350f1610d492216
BLAKE2b-256 524b8449154aed0f834a3165b74140857cf01513f9be48a6be7a2902629b24ee

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 4707c6e22a5120f55fbaf43962bb9388a269ba0dc7e1db0a2a27ac22a9e8f551
MD5 9d2014b9c5712f624c7eb273cb26581b
BLAKE2b-256 2e7ecded9ae665e093f2e1abb0f3776da1672db14ca576d51f8d2354fded677c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp38-cp38-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp38-cp38-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0daab205d38b5ea34d977d7d80db383c272b8e3d8a31b6d6112c0ba08e2e7e1c
MD5 c7b25f44db9959edbe3b470d30da29b5
BLAKE2b-256 eac686a0a7c6d2b288c43e9ae5768d7cb38a510b81abb454ac9f93e1eafbbd03

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eede5934b1b3606d70ab9a410a360ae32c9860aa43213d13323f81734dd302f1
MD5 dacfea77521882914982673f55f7a8dc
BLAKE2b-256 af1718e76f7227827042321f3a82f16b22f7e4cb6079f86f7e07f62b2f53994c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 1d8c8545586d800447da2797afdcbac66b9d7337ae8e227b766ee7e968c9faf8
MD5 1273b1ed4c5ee1b8a5c9d428683f1659
BLAKE2b-256 e3c8bc9091e0da6a02167ba0d46db0dc7738a7cf445c5e6e9aad648581c7cac8

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-22.9-cp37-cp37m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-22.9-cp37-cp37m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 55a8f88598ba3a5351902384f31777e448b0b007f3d4f829482d84a7d500323a
MD5 8741c338effdc507dec0e985c3f01fd8
BLAKE2b-256 3f23153e2c7de0b18dc8b46781185dbb4e5591dfc2c26ac4d7eb0a32912e1e87

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page