Skip to main content

pyATS Tcl: Tcl Integration and Objects

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Tcl Package

This is a sub-component of pyATS that wraps Python tkinter module in Python for better interface & datastructure casting.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.tcl

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.tcl

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.tcl-23.10-cp311-cp311-manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11

pyats.tcl-23.10-cp311-cp311-manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11

pyats.tcl-23.10-cp311-cp311-macosx_11_0_universal2.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.tcl-23.10-cp310-cp310-manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10

pyats.tcl-23.10-cp310-cp310-manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.10

pyats.tcl-23.10-cp310-cp310-macosx_11_0_universal2.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.tcl-23.10-cp39-cp39-musllinux_1_2_x86_64.whl (582.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyats.tcl-23.10-cp39-cp39-manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9

pyats.tcl-23.10-cp39-cp39-manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9

pyats.tcl-23.10-cp39-cp39-macosx_11_0_universal2.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

pyats.tcl-23.10-cp38-cp38-manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8

pyats.tcl-23.10-cp38-cp38-manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8

pyats.tcl-23.10-cp38-cp38-macosx_11_0_universal2.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyats.tcl-23.10-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 871fa0a0d516ee9e9c0551780449f1ea9259e408a24b94148fc59bdc2641d266
MD5 6d75ceb402141aadcefd6279be975a9e
BLAKE2b-256 a8ae9854290e3371cc1261414ac7b4689118e9df9f122cf67c2972bc72efb772

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53efb8405e16f214bbda807dba63a72972e0fe537d96c1098669ab1092dc639f
MD5 ccd6c609357ca1d83dede6ac4175732e
BLAKE2b-256 77b79a657ab0bc109476878c7a08bca02601cc20eae8e17da6f00ffa75037924

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 d73fe620d55ecee299183988e07319cfcecd8316865d58660a93c69c27873b38
MD5 48d02d60c9585673e9842ac98269e486
BLAKE2b-256 12b139c4a9479177e3d19527a375a9e4c58078f12e80c37590f1c574129e04cd

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f87f195e1d44a02cc188bcd020f18c5603e09e01ae9cbe374794d256ce6b1976
MD5 ac7689da9a5f3e9a5d29eefba529c5b8
BLAKE2b-256 57d26b2efd1b286abb4399e830516ac0a01aae3233a2a80ce4d9b435e008ae86

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a11dc0c40504493a934831e07cb17ec476fede44a380e90b6d04e52872012b06
MD5 5597b40746008f6149742170bfde3049
BLAKE2b-256 3b5aa5b579091a7a8140b3464749adc696e753762c3df93650e6cbc60ff4b109

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 ae831e172181b711cc868fefbf40dcfe0784eb69c8fcb1c24d86ad361d5fcc8e
MD5 3a2333268b7703c0e5045e1e594bdf3b
BLAKE2b-256 71131e058355e4e8c8c40377943d47d7205417bddea046e5db9c7f5fcec03e41

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 294afb149e4d966cd7fdb4b13ce9adeb4b3fa66a0f086a28908d65622d053cd4
MD5 a9bbccbed700c6054e1f4a9493cf68fd
BLAKE2b-256 d65f9d53b5df18d0ac16eefc5c45e77f4727f72af1df0da9525a356a9ee3d792

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b67af984504ba62e56c5a5671c7c9a0203991abe158b8d2bc4c4c342d8f0aa8b
MD5 8d49cffefac75b6bcabfd42e5775bb94
BLAKE2b-256 876752976231b7f2338b0890d35f989a1df6a1ce9a1dc0a760ac997d69919a76

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71492d067f4944a994a4a7c80526ede0aed628e4f243743bc159c58ac2184c3a
MD5 f10c29f177fc0c95cfbb300b462cfd5d
BLAKE2b-256 b27d68c7c91156de792c0fe30b613b94a72de2298f8859725d6dd86c1d04bb62

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 98be0125006107ea6a723ac0c66ef6f87565953fafe0ad2eea03a864cbdfab33
MD5 82e24adf1015d079b5e2724e711f2e73
BLAKE2b-256 885d21b248dae5f72f3c84d48d7b07670189bc29695c1580e56643508eb11cca

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d6243af6829baadfb38f591aa3f34da7d1c87f184687db2b9c867e852bcbccd
MD5 1c3abb406af33b85a7a18f2d2e33e1a1
BLAKE2b-256 5f6d0d14b9e1d71b6ef6d7c2fff4f1793a86332c778cdd41caa86f776dc45dd5

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52c7638421a0feefc96a5e39ffe8c37d90f57d724f0a0cfd052eaa08c4a0c8dd
MD5 f55c4f678b4d04b7356eba3123f0e01f
BLAKE2b-256 e3383b907d3330b666384e1a43f7aa6185a158cd64aad3bb98f0284dfbaa153d

See more details on using hashes here.

Provenance

File details

Details for the file pyats.tcl-23.10-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyats.tcl-23.10-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 4914894dbc55ba8ae5e8fbc5b2e5a916b69c56215ffd3ea2d4884200f7a8862b
MD5 90accb99d418bddb320420585462ba5e
BLAKE2b-256 9b63fca3e451bb992e3cf0d42a688d870f42a589316b96c8d5169cd6f5a4ae1b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page