Skip to main content

A modern C++ header only cdf library

Project description

License: GPL v3 Documentation Status CPP17 PyPi Coverage Discover on MyBinder

Python packages

Linux x86_64 Windows x86_64 MacOs x86_64 MacOs ARM64
linux_x86_64 windows_x86_64 macos_x86_64 macos_arm64

Unit Tests

Linux x86_64 Windows x86_64 MacOs x86_64
linux_x86_64 windows_x86_64 macos_x86_64

CDFpp (CDF++)

A NASA's CDF modern C++ library. This is not a C++ wrapper but a full C++ implementation. Why? CDF files are still used for space physics missions but few implementations are available. The main one is NASA's C implementation available here but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy. There are also Java and Python implementations which are not usable in C++.

List of features and roadmap:

  • CDF reading
    • read files from cdf version 2.2 to 3.x
    • read uncompressed file headers
    • read uncompressed attributes
    • read uncompressed variables
    • read variable attributes
    • loads cdf files from memory (std::vector or char*)
    • handles both row and column major files
    • read variables with nested VXRs
    • read compressed files (GZip, RLE)
    • read compressed variables (GZip, RLE)
    • read UTF-8 encoded files
    • read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
    • variables values lazy loading
    • decode DEC's floating point encoding (Itanium, ALPHA and VAX)
    • pad values
  • CDF writing
    • write uncompressed headers
    • write uncompressed attributes
    • write uncompressed variables
    • write compressed variables
    • write compressed files
    • pad values
  • General features
    • uses libdeflate for faster GZip decompression
    • highly optimized CDF reads (up to ~4GB/s read speed from disk)
    • handle leap seconds
    • Python wrappers
    • Documentation
    • Examples (see below)
    • Benchmarks

If you want to understand how it works, how to use the code or what works, you may have to read tests.

Installing

From PyPi

python3 -m pip install --user pycdfpp

From sources

meson build
cd build
ninja
sudo ninja install

Or if youl want to build a Python wheel:

python -m build . 
# resulting wheel will be located into dist folder

Basic usage

Python

Reading CDF files

Basic example from a local file:

import pycdfpp
cdf = pycdfpp.load("some_cdf.cdf")
cdf_var_data = cdf["var_name"].values #builds a numpy view or a list of strings
attribute_name_first_value = cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:

import pycdfpp
import requests
import matplotlib.pyplot as plt
tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
plt.plot(tha_l2_fgm["tha_fgl_gsm"])
plt.show()

Buffer protocol support:

import pycdfpp
import requests
import xarray as xr
import matplotlib.pyplot as plt

tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
xr.DataArray(tha_l2_fgm['tha_fgl_gsm'], dims=['time', 'components'], coords={'time':tha_l2_fgm['tha_fgl_time'].values, 'components':['x', 'y', 'z']}).plot.line(x='time')
plt.show()

# Works with matplotlib directly too

plt.plot(tha_l2_fgm['tha_fgl_time'], tha_l2_fgm['tha_fgl_gsm'])
plt.show()

Datetimes handling:

import pycdfpp
import os
# Due to an issue with pybind11 you have to force your timezone to UTC for 
# datetime conversion (not necessary for numpy datetime64)
os.environ['TZ']='UTC'

mms2_fgm_srvy = pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")

# to convert any CDF variable holding any time type to python datetime:
epoch_dt = pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])

# same with numpy datetime64:
epoch_dt64 = pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])

# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files

Creating a basic CDF file:

import pycdfpp
import numpy as np
from datetime import datetime

cdf = pycdfpp.CDF()
cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1), datetime(2018,1,2)], "hello\nworld"])
cdf.add_variable(f"some variable", values=np.ones((10),dtype=np.float64))
pycdfpp.save(cdf, "some_cdf.cdf")

C++

#include "cdf-io/cdf-io.hpp"
#include <iostream>

std::ostream& operator<<(std::ostream& os, const cdf::Variable::shape_t& shape)
{
    os << "(";
    for (auto i = 0; i < static_cast<int>(std::size(shape)) - 1; i++)
        os << shape[i] << ',';
    if (std::size(shape) >= 1)
        os << shape[std::size(shape) - 1];
    os << ")";
    return os;
}

int main(int argc, char** argv)
{
    auto path = std::string(DATA_PATH) + "/a_cdf.cdf";
    // cdf::io::load returns a optional<CDF>
    if (const auto my_cdf = cdf::io::load(path); my_cdf)
    {
        std::cout << "Attribute list:" << std::endl;
        for (const auto& [name, attribute] : my_cdf->attributes)
        {
            std::cout << "\t" << name << std::endl;
        }
        std::cout << "Variable list:" << std::endl;
        for (const auto& [name, variable] : my_cdf->variables)
        {
            std::cout << "\t" << name << " shape:" << variable.shape() << std::endl;
        }
        return 0;
    }
    return -1;
}

caveats

  • NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycdfpp-0.7.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

pycdfpp-0.7.0-pp310-pypy310_pp73-win_amd64.whl (398.1 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (854.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (666.5 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (717.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.0-pp39-pypy39_pp73-win_amd64.whl (398.1 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (854.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (666.5 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (717.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.0-pp38-pypy38_pp73-win_amd64.whl (398.0 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (853.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (666.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_10_15_x86_64.whl (717.7 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.0-cp312-cp312-win_amd64.whl (400.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pycdfpp-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (852.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-cp312-cp312-macosx_11_0_arm64.whl (669.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pycdfpp-0.7.0-cp312-cp312-macosx_10_15_x86_64.whl (722.1 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

pycdfpp-0.7.0-cp311-cp311-win_amd64.whl (399.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycdfpp-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (852.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-cp311-cp311-macosx_11_0_arm64.whl (667.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pycdfpp-0.7.0-cp311-cp311-macosx_10_15_x86_64.whl (718.4 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pycdfpp-0.7.0-cp310-cp310-win_amd64.whl (398.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycdfpp-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (852.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-cp310-cp310-macosx_11_0_arm64.whl (666.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pycdfpp-0.7.0-cp310-cp310-macosx_10_15_x86_64.whl (717.3 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pycdfpp-0.7.0-cp39-cp39-win_amd64.whl (390.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycdfpp-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (853.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-cp39-cp39-macosx_11_0_arm64.whl (666.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pycdfpp-0.7.0-cp39-cp39-macosx_10_15_x86_64.whl (717.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pycdfpp-0.7.0-cp38-cp38-win_amd64.whl (398.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycdfpp-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.0-cp38-cp38-macosx_11_0_arm64.whl (675.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pycdfpp-0.7.0-cp38-cp38-macosx_10_15_x86_64.whl (747.9 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pycdfpp-0.7.0.tar.gz.

File metadata

  • Download URL: pycdfpp-0.7.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0.tar.gz
Algorithm Hash digest
SHA256 087e632ff60d6464f1a77b94f9c77e5fd077d2534b9d676149cf72d9e686626a
MD5 15db9f762e437d14e365b06853f1eaf5
BLAKE2b-256 b48e9dca58fc7657ba72f8d13f955c286850bee446bdf8e8ff1974688498878c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1b9ef3b6f46ffbc8d1a5f75b15be702b952c3fccbad972207e4618993e3690f1
MD5 8fa1f7324e9ed9931950f43e639c6030
BLAKE2b-256 467252a538e7897ad80253ae3d91793f8da2bfc81c7f5695f54f7d54a47ce137

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdce4463ca46ce0a1d5fadf70397fa97abdc3d5e2cae9e095e9d7ee79508afb1
MD5 be7211a0fc191a8930c9dab92ea91853
BLAKE2b-256 f740167070b420ac00a200c552eb02b7579b44aa808927c2a0d10e0a2c081de0

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bfedc3d20068bc684dfa870dff225870646815f8d48e361e7d793a207435b8b
MD5 2db3d96d44e9edfbc9eea229c7c9432c
BLAKE2b-256 16c81e20e96dbfae5ecea97c500b505d76f8cc721ece9036b0589a2450e4d4c4

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 744cf4b977818f926957fec882675452698a5a4d3da5176c3e80c0c1754f0161
MD5 1144db8e7081dac2d3c2940e8ca056dc
BLAKE2b-256 4bc55fea23fedaa4dc697a7ebdcac063fd8b9feae73b91fa0d514348b5690971

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 da5120cf4b93bf2afe90441e582b8394ed4265ed439ae309fa88b37048818e54
MD5 9691a7cb705ccf854557de35187738d4
BLAKE2b-256 85e2925a65ac3a53ee7ac616feae6339b85e02c047cd189865e412ffc9f55773

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecfdab5fdd8e319b9a8a0e6aa5fb13c56a3b2cc7a8faeb15744b2e2dd6f16231
MD5 b270dd14919217a91931fc70de1fcba3
BLAKE2b-256 9df3600989df03f6c08b7a93659e608160ece70dd1d40ed5975311536569fb43

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d6890a95243d322c4fe8a99096ed6d43efe7f684c9310d873cc62d879c9a01c
MD5 aff498140c616a02c1513689a1c1ebf8
BLAKE2b-256 1c5f77c25eebcef076d791ab24d384cc04f7e9509a642f9e98e826658342139d

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3578559a3882b07793d4e225086d8724c1340e8b63fa6a81322bd6376eb5266a
MD5 70840f52ca9fecfbdb89dcec90f962e5
BLAKE2b-256 3578e639b96a0bcba17b39edf9d7270fcd2be8962146b8e9a0ae08d3b8d77278

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6ca2cc4e8bebae1c85925c16542c1f04827e22d6966dede7240890b3d4f2b883
MD5 b46d6ce2043fb70fb96fbc6a225fda22
BLAKE2b-256 1d5a60bf50edd3c73f6c27f7cecb6db93165706b26af00b24356fb9dcc70f441

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e05545a4078f574325437edfd745905b5763edda35fa34e46e3e1b40d80b9341
MD5 c2347a5f6595b99564a3f7a7ca5f7b3d
BLAKE2b-256 7d92f827aa3890b0e68fe78871a6f69aa341c741a9031b1a4ef447dbc0719fc8

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22959c5449b0c0823f5df3b0cb9456286bec9d6a6fc5e98464dc1fdc39698007
MD5 ed6e0f763c1dab12dcd74961179c822f
BLAKE2b-256 ed8726c6de7016645d30fc4ef2af0e0ab100090685b3527db58a1fc75a117f8c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 508ba0517801a6b6205bd05922eba25e7ff0a69e88da898f5bf2e71b451c390d
MD5 b4c1f7e3da141325f79f6fa52dfb3fdf
BLAKE2b-256 06941f207cf0672d91d22c5104acacd3b2bce972bc17eed0e23b6008622495cb

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 400.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f21c4503a610a5fe1a6e333c34dc43fdd04a0a1426e96742b057f7554b239ee5
MD5 014d9b0001faa08a5aac11477ddb626d
BLAKE2b-256 685efef03c91d90e6d4009ea33869f18ddb056f09e78566aba94ba06a7272287

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cd5cd189715d69d06f23099e02bfc97f56680aa58e5bf5e7f34a829e980e138f
MD5 eed2007c4382760ce716040ca3b04489
BLAKE2b-256 20a2bf51f2153d2c24f2b3b8d43d82733ee5e0a83b26559a110789c6be2c3205

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6695d73b02a3dbee6a9c3d21bf1c74a08f7d4c464b503288a992a2dfab8061d
MD5 33cef5c64257ece75d5c91b453f3394c
BLAKE2b-256 31be7769d7515a09bf18eae58c8660e8d06533ea1a8527c5a70ae768f4bf54c7

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b4d04991312877d1d960e798bcdfa9a5b950bcb51f9ca30a227425be1d9d3c5
MD5 816c60b29317b3c1ef9017d3abbdd639
BLAKE2b-256 9ce60c63d84e83ea6da29685cfd1a6de0992920b46b3e5fe183cd9352d175aa8

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fa37ba32d2cf73642b71e4379b55fb487f7fc7def0559f8d52839882923b5089
MD5 f0de678da64ec90e460ac1303a08d032
BLAKE2b-256 2722da687dab277fc979c74ddc4fc66224e5684f654b4e696b959fa28d46e5c2

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 399.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3182546743aed21039a178daa0642da8bb821df14331e4f46cbedf18ec56b40c
MD5 7d5d4183e91ba7f7e4760b7d705013d6
BLAKE2b-256 dd657623e781039778bc6a6ceae73288e3d49e8bb9de7ec8bfa1e0a52c639a75

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c186e8f89df3c94dece419973f8c6f7c012c6fce70fdd410a07a35054043a2f9
MD5 50c0acd0be05167474e7db5dbbda48d6
BLAKE2b-256 721d04de90245bdaf90869bb5cb116218618907f134a87f6eefc1e5cb76833b9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c80ef53d9c250b3dd8bbccf72357d33e9b8507da4640bbb9fd8f09f56f3e86f8
MD5 0a85524b468f1cdb7a4512713a4d82b7
BLAKE2b-256 081a6bb8ba811010be141e9b0100b8aa30a81806fbc6f2691ad4e94728511773

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ae93085912c0aaa32f5754a1f4a1860832d38eb487a52559f4c74ab80a8f79b
MD5 ae243e5a402e5f97d05135ce28c354c5
BLAKE2b-256 10b83f7fc3a89d363c49087369a33671edda631d1ca1e79235c1fa37d736a18d

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c1c363e6f415191dbf5fd8fcb0c936cde5ce2018e97364c53b8bcd6ae6dfc83b
MD5 02cd4bd37fe1c2de49b92d5389a9de96
BLAKE2b-256 c3f96bb87502e0194ce1a92e1dd0eea0f8e0ba2632d5452bf7f7414e8ad25052

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 398.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 68362e21aa677421547245f1f9e21ddf8d8f145e5287702afe20dae590b58226
MD5 68bd02f76f95d32f1d64e86de2c19918
BLAKE2b-256 56dff36acacb07edde9d3bcd6c24794296298686bd1fd4ee18850f7fb7c67f77

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cf9ecb9f01e877c62f270915c642068d95e8ff8097209f46438ad998c423b547
MD5 be1e0e49b8b51fff535c686ed81119b4
BLAKE2b-256 32875343b607b776b615fed11a0f7d3ca4a5d0775421523555a807e8e8e6e9ab

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aaa6b583e13f60085fdd3e6c05c411b6c38a1217c94934ae156797d5cd7346ad
MD5 05c9260bac10ba94f66406371824425f
BLAKE2b-256 03d3692c9c22d28cad951cc50ac876ceb15d4c18a98e1f7fabdf6aec6eea5303

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b011a0559d38c6b13aa4078b685bfe036b509649a0049614c1cae4b23b848073
MD5 7fa2ce809b5c43fe51ade7bbc4f924f8
BLAKE2b-256 aa9e8cd45708f8db424250d9c95b83b93829bcad6964fcb7e19a1a35d60d60e1

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a812d5c3d5b420cda7ed791854f3d659691281aad05bd7936db0f0ce1b179fb5
MD5 decfcbf563d4d7c14d259dd95e8ab095
BLAKE2b-256 dbcf4cf9ba6683992545df50bb7579c6b8755c0df8a33a676f50e297ea9a8fd8

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 390.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f290268003751a71a97d2d5ef270f088b020191b4c41758dc557f00128d998d
MD5 607cb45206f2b83fa8352696de9b7d46
BLAKE2b-256 f9b4157b3f6e171bc7552aff5ae5f35c00e3fc65d1cfa5e1f91a0b96c2a45d6c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 97820916d683737b6be9424f052e02ee42b445deddffb7567a6d8d9bd483b8d7
MD5 7c3504f48301f742080c6d266c284ca6
BLAKE2b-256 c383fd59e58c63abb41f60b3c4f08547378c8c0eca5b5af9f3e1e942de8011cd

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 434cc9242661efd9cd34bc4e4fce4402b597cd8f9ddbe0efb8c87b44db5a771e
MD5 6d26bcc7c269d292993ec22ce5bd6054
BLAKE2b-256 a8d79747a8eb4177d4a7e86c2ab117d6e47de8179a5a8fa819d92973a781d933

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 881bd3ceb906d0ae123146176611ede26a953cea5269f1547a4ec200eb82f73f
MD5 c47ae77265314802568319cc0d990e44
BLAKE2b-256 c18545b9a0896d609186c96906a4d4ababb148d6065c64bf143320d1279dc630

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ddea55ebdeeed795f77760c183487b69ff146c7624356c5b4a60fbc31602fd1b
MD5 a4117ccfb32833419bbf4f584cbba178
BLAKE2b-256 91c04efca8d454bb1c33d213507cd1f519eda2995942fb0e69a34812274e6008

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 398.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6699c665000b6b2d207e2ff61aefcf8f705ac874b3fd86accd2ac7ecbc9311b
MD5 0de5da6b8fb28cb0bc93063d4d3f82a4
BLAKE2b-256 0d0c52f700eb753cb2006168d7d3dd332ca6d109f7d59fc87248c1fa7f6d3bdb

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f50ab7e6df19df580a0c41a6e049a51a9f8b4f2627f96d2d90b2f6ffc4eda65a
MD5 32333912f8d9e19f1fb06e590ff27f51
BLAKE2b-256 9efd123aa063ea500ad22f9f7b6dc90b493f3c17584f6a14b82b4abc1a43277a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9026c0a5c114ebc899676132e8db91a3cd621965eba6025aaf13ab35085f643
MD5 af4d4dbd4001f075812d51d780b35b41
BLAKE2b-256 283ddb9ffe9e0c346c7b1836b26086bcde30736434088860fe27ebd685db558d

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99578277f7404bd81d1ac5471fb83e47212439ab2b681fd2cf0248d4c473d775
MD5 028b8d25afab83dd2ef37e79bd3d23d6
BLAKE2b-256 eb8d59389ddd2de157eb878ec1e301e0f099bc4fc9c2407e6ed56189b72b2255

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f0915fc518e4570a983879caf8fc44a8d85b1ed5a8a4dacfae1d51bd5bac137d
MD5 e4efecd8e80fe9456b9639056a13664e
BLAKE2b-256 b6262d32949cc536d88ac27221e14f1998ca2493e6212df33a604860f99bfa18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page