Skip to main content

A modern C++ header only cdf library

Project description

License: GPL v3 Documentation Status CPP17 PyPi Coverage Discover on MyBinder

Python packages

Linux x86_64 Windows x86_64 MacOs x86_64 MacOs ARM64
linux_x86_64 windows_x86_64 macos_x86_64 macos_arm64

Unit Tests

Linux x86_64 Windows x86_64 MacOs x86_64
linux_x86_64 windows_x86_64 macos_x86_64

CDFpp (CDF++)

A NASA's CDF modern C++ library. This is not a C++ wrapper but a full C++ implementation. Why? CDF files are still used for space physics missions but few implementations are available. The main one is NASA's C implementation available here but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy. There are also Java and Python implementations which are not usable in C++.

List of features and roadmap:

  • CDF reading
    • read files from cdf version 2.2 to 3.x
    • read uncompressed file headers
    • read uncompressed attributes
    • read uncompressed variables
    • read variable attributes
    • loads cdf files from memory (std::vector or char*)
    • handles both row and column major files
    • read variables with nested VXRs
    • read compressed files (GZip, RLE)
    • read compressed variables (GZip, RLE)
    • read UTF-8 encoded files
    • read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
    • variables values lazy loading
    • decode DEC's floating point encoding (Itanium, ALPHA and VAX)
    • pad values
  • CDF writing
    • write uncompressed headers
    • write uncompressed attributes
    • write uncompressed variables
    • write compressed variables
    • write compressed files
    • pad values
  • General features
    • uses libdeflate for faster GZip decompression
    • highly optimized CDF reads (up to ~4GB/s read speed from disk)
    • handle leap seconds
    • Python wrappers
    • Documentation
    • Examples (see below)
    • Benchmarks

If you want to understand how it works, how to use the code or what works, you may have to read tests.

Installing

From PyPi

python3 -m pip install --user pycdfpp

From sources

meson build
cd build
ninja
sudo ninja install

Or if youl want to build a Python wheel:

python -m build . 
# resulting wheel will be located into dist folder

Basic usage

Python

Reading CDF files

Basic example from a local file:

import pycdfpp
cdf = pycdfpp.load("some_cdf.cdf")
cdf_var_data = cdf["var_name"].values #builds a numpy view or a list of strings
attribute_name_first_value = cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:

import pycdfpp
import requests
import matplotlib.pyplot as plt
tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
plt.plot(tha_l2_fgm["tha_fgl_gsm"])
plt.show()

Buffer protocol support:

import pycdfpp
import requests
import xarray as xr
import matplotlib.pyplot as plt

tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
xr.DataArray(tha_l2_fgm['tha_fgl_gsm'], dims=['time', 'components'], coords={'time':tha_l2_fgm['tha_fgl_time'].values, 'components':['x', 'y', 'z']}).plot.line(x='time')
plt.show()

# Works with matplotlib directly too

plt.plot(tha_l2_fgm['tha_fgl_time'], tha_l2_fgm['tha_fgl_gsm'])
plt.show()

Datetimes handling:

import pycdfpp
import os
# Due to an issue with pybind11 you have to force your timezone to UTC for 
# datetime conversion (not necessary for numpy datetime64)
os.environ['TZ']='UTC'

mms2_fgm_srvy = pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")

# to convert any CDF variable holding any time type to python datetime:
epoch_dt = pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])

# same with numpy datetime64:
epoch_dt64 = pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])

# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files

Creating a basic CDF file:

import pycdfpp
import numpy as np
from datetime import datetime

cdf = pycdfpp.CDF()
cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1), datetime(2018,1,2)], "hello\nworld"])
cdf.add_variable(f"some variable", values=np.ones((10),dtype=np.float64))
pycdfpp.save(cdf, "some_cdf.cdf")

C++

#include "cdf-io/cdf-io.hpp"
#include <iostream>

std::ostream& operator<<(std::ostream& os, const cdf::Variable::shape_t& shape)
{
    os << "(";
    for (auto i = 0; i < static_cast<int>(std::size(shape)) - 1; i++)
        os << shape[i] << ',';
    if (std::size(shape) >= 1)
        os << shape[std::size(shape) - 1];
    os << ")";
    return os;
}

int main(int argc, char** argv)
{
    auto path = std::string(DATA_PATH) + "/a_cdf.cdf";
    // cdf::io::load returns a optional<CDF>
    if (const auto my_cdf = cdf::io::load(path); my_cdf)
    {
        std::cout << "Attribute list:" << std::endl;
        for (const auto& [name, attribute] : my_cdf->attributes)
        {
            std::cout << "\t" << name << std::endl;
        }
        std::cout << "Variable list:" << std::endl;
        for (const auto& [name, variable] : my_cdf->variables)
        {
            std::cout << "\t" << name << " shape:" << variable.shape() << std::endl;
        }
        return 0;
    }
    return -1;
}

caveats

  • NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycdfpp-0.7.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

pycdfpp-0.7.1-pp310-pypy310_pp73-win_amd64.whl (398.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (856.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (663.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (717.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.1-pp39-pypy39_pp73-win_amd64.whl (398.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (856.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (663.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (717.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.1-pp38-pypy38_pp73-win_amd64.whl (398.9 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (856.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (663.7 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl (717.8 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.1-cp312-cp312-win_amd64.whl (402.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pycdfpp-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (856.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-cp312-cp312-macosx_11_0_arm64.whl (667.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pycdfpp-0.7.1-cp312-cp312-macosx_10_15_x86_64.whl (723.0 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

pycdfpp-0.7.1-cp311-cp311-win_amd64.whl (400.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycdfpp-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (858.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-cp311-cp311-macosx_11_0_arm64.whl (665.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pycdfpp-0.7.1-cp311-cp311-macosx_10_15_x86_64.whl (718.9 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pycdfpp-0.7.1-cp310-cp310-win_amd64.whl (399.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycdfpp-0.7.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (856.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-cp310-cp310-macosx_11_0_arm64.whl (664.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pycdfpp-0.7.1-cp310-cp310-macosx_10_15_x86_64.whl (718.1 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pycdfpp-0.7.1-cp39-cp39-win_amd64.whl (391.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycdfpp-0.7.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (855.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-cp39-cp39-macosx_11_0_arm64.whl (664.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pycdfpp-0.7.1-cp39-cp39-macosx_10_15_x86_64.whl (718.3 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pycdfpp-0.7.1-cp38-cp38-win_amd64.whl (399.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycdfpp-0.7.1-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (893.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.1-cp38-cp38-macosx_11_0_arm64.whl (673.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pycdfpp-0.7.1-cp38-cp38-macosx_10_15_x86_64.whl (748.7 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pycdfpp-0.7.1.tar.gz.

File metadata

  • Download URL: pycdfpp-0.7.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1.tar.gz
Algorithm Hash digest
SHA256 a2fa2255a6bcf07ba34f4044340541ea1cfbd7b37104c65a0240c04e3079f1fa
MD5 f89f620585200971b1233ce7cbdc8fe3
BLAKE2b-256 1864b9e9af6cceda966e2b64e9d9728d23f64bdf5ffa503a15baac14649fd787

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3382ebb2e14b7d310cf9ae552a7742eff73668d468d64efe0b3610ff111aec7d
MD5 9febed1658bf88cc536c035c897aff4d
BLAKE2b-256 f40197bff23fd789cb5800e579ad1a0b942f372bee8178b841db4375429695fc

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 994246b983854448f210fc253ed74d695d75dbbaeaa63a812134837e4196b00f
MD5 097739dec7b9aa53ad9b3e8885b2f569
BLAKE2b-256 cce761317fbbfa245bf309708c018db732ce24dba995ad381d979cb4571d710b

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2ae7295af490b0e52b57b9355706e5d16a4807e0a0d8258be7fa05175be7200
MD5 cb9ef98d7e7d1e56d3a5d4db0aa20484
BLAKE2b-256 abe30ae4cdba9675ab2d1bc309ab9c5f6872abe52f7a670101d3e36557e70f64

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b4ec49562e183ae1c199cb870107809fea5a510f39e16581ac5f8a830e24682f
MD5 7f28e091a21e201751c0bc9111e63498
BLAKE2b-256 817ac1cb4fa324099486417015c2e2534b5115ccb04f10486de5dca9e42cc775

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dd25761a59f5ec609eb7ad830f34f379a49831f41e2f18aa0f8792c4918779f9
MD5 4bd784213827d9f961e213399406ebe6
BLAKE2b-256 a8d5e12186d2bc63816966653cbf33ea65f5e0ca43a1a5d47d0a5470e8fe696f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 facd36442af1bff29509b48eae65367660af0ebd1dac010d8b96e2b093ed5011
MD5 0853787d1df774a626cd93dad25477e0
BLAKE2b-256 853ace1c1be5d595406356e4b2741c611ab69ca42f7b1e950665e6262614d8dd

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13e3daf4fd4fcfc41989be03d166495f62bd4de2aa9c66eb9f0ade2644335bdf
MD5 694fa34d3dfe4289e474ab98c2155576
BLAKE2b-256 690e92374afaad0f94bdf76f6e5275d3646847e5626dcce39dbfd3c8d577945a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a01c0523ea570f6727de35b3dcf628e0aad1e76d203d8b0b527f84c0b592b8fc
MD5 99b20f8d3a8fc0425b9215f9f8b02e5c
BLAKE2b-256 c16e213bcb383d89b643b88a7b9187f6782827ad2e0f3f4c6ce18a2f71f82acf

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 95b96ca5d57ae3111fc7c179c9badbb4e3e445ee69e2fed34ee5488e9b15abca
MD5 0c3e5020e369aebf000dfa25fbbda971
BLAKE2b-256 482a449ce2d3869f4614be9783a158f3b69eb243654d0b445e5991a8e053f28f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34c688e9f09b313d5c578aaa14f748e0339cb595955977480532b9181d98607c
MD5 d4ed70b865d672e991d299a8d5e570fe
BLAKE2b-256 c86fa5e36f081c6b974ee24025cb3e3c06918d05a6ce7ca5a6c5e49d042921cf

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30e49d336e9581b4977010df4de2d046e408c8801b63bef4a4464917e6eff948
MD5 80845b575e310c76138e9296e0dbcc70
BLAKE2b-256 b5653da7ad7450cb97e6b7fae9c75def4f9af5e9f8ff3eb49fba84fdb3dc3145

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3fee1b5d778ebc8d5a36836caf8c626c65808e1a8c0ffcc33f3b2e17f5f4b539
MD5 7773feae28848fb40a076dd4601c2534
BLAKE2b-256 e3a55fe12cb079b6a4e190c770836fd489b1cb35129c6ef857880e49636b7009

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 402.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d0adfddc42b34ebae78a3ed24cceaa3e3f0cee80aef778432a6b583a8ba5eec3
MD5 f863073121cccaaba827e1aa2ad31ef8
BLAKE2b-256 f4159235a1809d9396e9004cc81ab3d0aef60d9ce37326cd292944de6fa72f56

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0882c2dc0218dcfc26df2df54a9e06007222fb5359a71aff440ab7f292659870
MD5 d511393c46861b0477caf59d7bf29e6c
BLAKE2b-256 7b6cd16c469f81f499839161dcb50c584f0365979900592fa3801cba23832334

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e9392ede4b626aa6b8a48209fd9f768c6e27498d462ecef2608fe429e96a8d5
MD5 4f4a4f7492eff8154b7b3798e8d7b711
BLAKE2b-256 21fa7ccf97e0a9c10a28ab3d909f7b0280f025dc884e3aa2092418743ce71d6f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bde28638efc4ff7cc861be3f5f29b990dbe236ae20e33c0e31a7ae082f8867d
MD5 091f97f5cf7809898eb8b0e6c65b12d8
BLAKE2b-256 b23eac2f27abee84bc2c33a9c88a1edd7b426e4d07a0a59147515d021416f925

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f04983df47448229716c622daedd01b3103aaff5e5e72e91b9888bf121edd8a1
MD5 7377b7ce4168944e2181f0fb80fe7294
BLAKE2b-256 c8c82f7d2f8ccb7f0f92b36c089e5f7843e295ccba45b40e159f5d250296dea4

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 400.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0b691b82ad999418cd53c1c5b36e100280213c6d095bb2f284d1af127114bcb7
MD5 28a1065efb3153ae178a33223777ba10
BLAKE2b-256 7da38ffd3a68860219e43ba9acfc2ddf9c60cf50ef7d45f0ec79063dbc20fbb9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 153dd419900f111777e0fa9b76b3cbedd91194103140da36b376345a1d53bc98
MD5 a9f4a1be202b5fedff1c724c4d16be16
BLAKE2b-256 fffa544f7cbf5945e5ae1034ba3739d875e66766059d663a16feb525e8154af2

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00ba1e4a67e0f12620978a88789f1e226049a495e022305179162e16f051f80d
MD5 bacc68ca5ceebc9c0cbefdfdd369e396
BLAKE2b-256 71612953fda79acb8c13c31b3f809e58a709061ca4ba7e5cf3a5adb02e2316a9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6ef0d88576284e7b897ff753c1e6186c8b4fbbaeac4e8ae6852ba0bacb2a694
MD5 d69a908797262eb60ca079f7fab0904b
BLAKE2b-256 15dc05c3642ccad573ee86e8428319750124363a4e37324338cd6329fe8efffd

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d3804d48078af608a9f13e6e9b087f82f6dac7d62616699a0e7163b1e895c927
MD5 656b83a2873237ee212e9553fc1f695a
BLAKE2b-256 821bbf8094218173bd807121acb83ae687b8071479eeb6e028b9b179d1944d38

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 399.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4aa6b3c75804bdbe967b0488a39cd0e7ef03ef191c217b82c1d7fc220b7fdafb
MD5 8d6087c08419001508d0c3fe9f05f837
BLAKE2b-256 90e6c55401fda75f8801228f61d4ed0726113a311cfd640642f72854c6a2fd9c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d959b2ba736d8ee34736e117602532ba4b3b1c27bb0429608d94b95cc40f9675
MD5 62514574d97c5b791a8599b564363d1f
BLAKE2b-256 2007a41021a0ecba010add19403307cac6a1c0e67c00b6d09430f39ee8e5f669

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 810bfd0248e9c9f8b13b0cf15d7cf66d508ff4680bcd4819e8909fd17bd70fda
MD5 656ed49804d94fff0e8d34512a1ef53c
BLAKE2b-256 44d21fce69c3c3b878d6f8d8fa84746cc14b48efc2369e6c22b3eabfd530fdec

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f758f33316facb22e68f2881c19e54968b1bfd285d06a03eb486531484c7b92b
MD5 4606451cf4019588e55dc14a7d0c89b8
BLAKE2b-256 1dd5abf4a6242d24374030b4eb62f2a0cf929c4f385414976343f90535e36aff

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 76425b0c0bdb1254eed6145ef96f6a77ba813423fdf0ef612128cc05c0af4c2b
MD5 2a26a4b5f4002b8c6f51014f6255bd9b
BLAKE2b-256 d9ce1209a102fded8a274cb12b927da7871dc8df30a98298ff3b7d9332ae95e5

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 391.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3708306e8d235996ee617398948e0c647fe151a3e44451f731aa9743ecdcef40
MD5 c35fcfaa48b1bcac18d975f067844347
BLAKE2b-256 97b96c4bd86fae18664393c375dcbe78b621c4712bea42c3e4ccf76d3e6fc065

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9860527e3d4ac64a3d0b99cd9574fde10767d5276b7d7aec4c5cc1d939497a7f
MD5 ca3ffc402255540dd07bc795e40ea1c7
BLAKE2b-256 fa7de7f175858300fd5d9c87faeca40541de6dccb09cd7dedaf691b9f678a363

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2cceb46ce4be52b954c3dcfc1b9b3f360ee694440370d44963c69ec13ae0517
MD5 6a6e75d81cd3284f911bf7f00d44b261
BLAKE2b-256 f3d97e8ca5c34183d6685df0e581fe03069414d1cf53e6daeae90192c764ac1b

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b56af34e64ce5562e314cc201bb64d92d17a75acf97e018c4a72c70733b8e4c3
MD5 31b9bad3f37ceefe512f2b96f4046399
BLAKE2b-256 13334f0eef0dbd11c900cf8260749febb5c8221eb9fdf6b8c596e99539fa9f43

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f63c299c3d57b2fbf3f9fa260f2d1e4c7d01f5dfce594b8d78a5427f999b59bf
MD5 51f23b9029951c91916b9bfb1fbb7bd6
BLAKE2b-256 96e463e62f6438767a0e6ed9a892f2891dd597578d0a02111e47d9faccf2fff0

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 399.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ad2ae696a1459467217ff4827ec48fcb9fcdfbf13938373e98213606cf9f79d
MD5 4d988e4e32f0747ff3a971169b0986fc
BLAKE2b-256 914b5eafb7246a0d51beb3899e5c454ca80b3f56cca3aa4d22d56e96cb1ba508

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4a87a7dffe777ea013d28ab09f2c8c456770baaacaee0278fda80750fdddd175
MD5 55a8b7b40af167293e08cbe9b2a2bfb2
BLAKE2b-256 8d8799dcd9e74a1dbfa23af42875e1364d8e855d9ef03ebac25e7dc3aaf61fb5

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e40fa18cb26a387265e5b600386af027f574e2849b92263cda9b04e4140e75ff
MD5 b8fda0bda61b040870aa434c246db2a8
BLAKE2b-256 3f8a2e19694eb767ec8595b4d15b3b77c00006f5c0b8d2687abdf6e472b1b7ef

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65f1759f477a627896e02ed9c13df866e2b3e58d75e6ab3fb4bffb13393a9df1
MD5 b082bdc5b472fa6f1a14203ed72eed88
BLAKE2b-256 145ca0b08363ececb18d7b5331c9ad1767aa05eeac01a3b1f639857562caae31

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f9c935b5317338d6751138e984413c79afefce1353c796f59f81ee2967b933ca
MD5 195831782cacc5313520a0f27a42773b
BLAKE2b-256 b1510834cca7a49a2b190230b678d12bc4f52f2e28a5dfc9f08502a549c402b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page